IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3827-d1136528.html
   My bibliography  Save this article

Numerical Modeling and Simulation of the Solid Oxide Cell Stacks and Metal Interconnect Oxidation with OpenFOAM

Author

Listed:
  • Shangzhe Yu

    (Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
    Institute of Physical Chemistry, RWTH Aachen University, D-52074 Aachen, Germany)

  • Shidong Zhang

    (Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany)

  • Dominik Schäfer

    (Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany)

  • Roland Peters

    (Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany)

  • Felix Kunz

    (Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany)

  • Rüdiger-A. Eichel

    (Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
    Institute of Physical Chemistry, RWTH Aachen University, D-52074 Aachen, Germany)

Abstract

Solid oxide cells are capable of efficiently converting various chemical energy carriers to electricity and vice versa. The urgent challenge nowadays is the faster degradation rate compared with other fuel cell/electrolyzer technologies. To understand the degradation mechanisms, simulation of a solid oxide cell is helpful. Since most previous research developed models using commercial software, such as COMSOL and ANSYS Fluent, a gap for knowledge transfer is being gradually formed between academia and industry due to licensing issues. This paper introduces a multiphysics model, developed by a computational code, openFuelCell2. The code is implemented with an open-source library, OpenFOAM. It accounts for momentum transfer, mass transfer, electrochemical reactions and metal interconnect oxidation. The model can precisely predict I–V curves under different temperatures, fuel humidity and operation modes. Comparison between OpenFOAM and COMSOL simulations shows good agreement. The metal interconnect oxidation is modeled, which can predict the thickness of the oxide scale under different protective coatings. Simulations are conducted by assuming an ultra-thin film resistance on the rib surface. It is revealed that coatings fabricated by atmospheric plasma spraying can efficiently prevent metal interconnect oxidation, with a contribution of only 0.53 % to the total degradation rate.

Suggested Citation

  • Shangzhe Yu & Shidong Zhang & Dominik Schäfer & Roland Peters & Felix Kunz & Rüdiger-A. Eichel, 2023. "Numerical Modeling and Simulation of the Solid Oxide Cell Stacks and Metal Interconnect Oxidation with OpenFOAM," Energies, MDPI, vol. 16(9), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3827-:d:1136528
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yuqing & Wehrle, Lukas & Banerjee, Aayan & Shi, Yixiang & Deutschmann, Olaf, 2021. "Analysis of a biogas-fed SOFC CHP system based on multi-scale hierarchical modeling," Renewable Energy, Elsevier, vol. 163(C), pages 78-87.
    2. Wehrle, Lukas & Schmider, Daniel & Dailly, Julian & Banerjee, Aayan & Deutschmann, Olaf, 2022. "Benchmarking solid oxide electrolysis cell-stacks for industrial Power-to-Methane systems via hierarchical multi-scale modelling," Applied Energy, Elsevier, vol. 317(C).
    3. Meiting Guo & Xiao Ru & Zijing Lin & Guoping Xiao & Jianqiang Wang, 2020. "Optimization Design of Rib Width and Performance Analysis of Solid Oxide Electrolysis Cell," Energies, MDPI, vol. 13(20), pages 1-18, October.
    4. Miao, Xing-Yuan & Rizvandi, Omid Babaie & Navasa, Maria & Frandsen, Henrik Lund, 2021. "Modelling of local mechanical failures in solid oxide cell stacks," Applied Energy, Elsevier, vol. 293(C).
    5. Jianmin Zheng & Liusheng Xiao & Mingtao Wu & Shaocheng Lang & Zhonggang Zhang & Ming Chen & Jinliang Yuan, 2022. "Numerical Analysis of Thermal Stress for a Stack of Planar Solid Oxide Fuel Cells," Energies, MDPI, vol. 15(1), pages 1-18, January.
    6. Zhang, S. & Reimer, U. & Beale, S.B. & Lehnert, W. & Stolten, D., 2019. "Modeling polymer electrolyte fuel cells: A high precision analysis," Applied Energy, Elsevier, vol. 233, pages 1094-1103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shangzhe Yu & Dominik Schäfer & Shidong Zhang & Roland Peters & Felix Kunz & Rüdiger-A. Eichel, 2023. "A Three-Dimensional Time-Dependent Model of the Degradation Caused by Chromium Poisoning in a Solid Oxide Fuel Cell Stack," Energies, MDPI, vol. 16(23), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Guoqing & Yang, Daijun & Xiao, Qiangfeng & Dai, Haiqin & Zhang, Cunman, 2021. "Effects of vortexes in feed header on air flow distribution of PEMFC stack: CFD simulation and optimization for better uniformity," Renewable Energy, Elsevier, vol. 173(C), pages 498-506.
    2. Zou, Wei & Froning, Dieter & Shi, Yan & Lehnert, Werner, 2021. "Working zone for a least-squares support vector machine for modeling polymer electrolyte fuel cell voltage," Applied Energy, Elsevier, vol. 283(C).
    3. Karol K. Śreniawski & Marcin Moździerz & Grzegorz Brus & Janusz S. Szmyd, 2023. "Transport Phenomena in a Banded Solid Oxide Fuel Cell Stack—Part 2: Numerical Analysis," Energies, MDPI, vol. 16(11), pages 1-21, June.
    4. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Blandy Pamplona Solis & Julio César Cruz Argüello & Leopoldo Gómez Barba & Mayra Polett Gurrola & Zakaryaa Zarhri & Danna Lizeth TrejoArroyo, 2019. "Bibliometric Analysis of the Mass Transport in a Gas Diffusion Layer in PEM Fuel Cells," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    6. Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    7. Gong, Chengyuan & Tu, Zhengkai & Hwa Chan, Siew, 2023. "A novel flow field design with flow re-distribution for advanced thermal management in Solid oxide fuel cell," Applied Energy, Elsevier, vol. 331(C).
    8. Xia, Zhiping & Zhao, Dongqi & Li, Yuanzheng & Deng, Zhonghua & Kupecki, Jakub & Fu, Xiaowei & Li, Xi, 2023. "Control-oriented dynamic process optimization of solid oxide electrolysis cell system with the gas characteristic regarding oxygen electrode delamination," Applied Energy, Elsevier, vol. 332(C).
    9. Jeon, Dong Hyup, 2019. "Computational fluid dynamics simulation of anode-supported solid oxide fuel cells with implementing complete overpotential model," Energy, Elsevier, vol. 188(C).
    10. Uwe Reimer & Ekaterina Nikitsina & Holger Janßen & Martin Müller & Dieter Froning & Steven B. Beale & Werner Lehnert, 2021. "Design and Modeling of Metallic Bipolar Plates for a Fuel Cell Range Extender," Energies, MDPI, vol. 14(17), pages 1-26, September.
    11. Zheng Li & Guogang Yang & Qiuwan Shen & Shian Li & Hao Wang & Jiadong Liao & Ziheng Jiang & Guoling Zhang, 2022. "Transient Multi-Physics Modeling and Performance Degradation Evaluation of Direct Internal Reforming Solid Oxide Fuel Cell Focusing on Carbon Deposition Effect," Energies, MDPI, vol. 16(1), pages 1-20, December.
    12. Pan, Mingzhang & Li, Chao & Liao, Jinyang & Lei, Han & Pan, Chengjie & Meng, Xianpan & Huang, Haozhong, 2020. "Design and modeling of PEM fuel cell based on different flow fields," Energy, Elsevier, vol. 207(C).
    13. Guo, Meiting & Ru, Xiao & Yang, Lin & Ni, Meng & Lin, Zijing, 2022. "Effects of methane steam reforming on the mechanical stability of solid oxide fuel cell stack," Applied Energy, Elsevier, vol. 322(C).
    14. González, Ruben & García-Cascallana, José & Gómez, Xiomar, 2023. "Energetic valorization of biogas. A comparison between centralized and decentralized approach," Renewable Energy, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3827-:d:1136528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.