IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3401-d1121916.html
   My bibliography  Save this article

Comprehensive Review of Dust Properties and Their Influence on Photovoltaic Systems: Electrical, Optical, Thermal Models and Experimentation Techniques

Author

Listed:
  • Hussam Almukhtar

    (Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand)

  • Tek Tjing Lie

    (Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand)

  • Wisam A. M. Al-Shohani

    (Department of Mechanical Power Engineering, Engineering Technical College, Middle Technical University, Baghdad 53172, Iraq)

  • Timothy Anderson

    (Western Institute of Technology, New Plymouth 4310, New Zealand)

  • Zaid Al-Tameemi

    (Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand)

Abstract

As conventional energy sources decrease and worldwide power demand grows, the appeal of photovoltaic (PV) systems as sustainable and ecofriendly energy sources has grown. PV system installation is influenced by geographical location, orientation, and inclination angle. Despite its success, weather conditions such as dust substantially influences PV module performance. This study provides a comprehensive review of the existing literature on the impact of dust characteristics on PV systems from three distinct perspectives. Firstly, the study looks at the dust properties in different categories: optical, thermal, physical, and chemical, highlighting their significant impact on the performance of PV systems. Secondly, the research reviews various approaches and equipment used to evaluate dust’s impact on PV, emphasizing the need for reliable instruments to measure its effects accurately. Finally, the study looks at modeling and predicting the influence of dust on PV systems, considering the parameters that affect electrical, optical, and thermal behavior. The review draws attention to the need for further research into dust’s properties, including thermal conductivity and emissivity. This analysis highlights the need for further research to develop a scientific correlation to predict the thermal behavior of PV in dusty environments. This paper identifies areas for further research to develop more efficient and effective methods for analyzing this influence and improving PV efficiency and lifespan.

Suggested Citation

  • Hussam Almukhtar & Tek Tjing Lie & Wisam A. M. Al-Shohani & Timothy Anderson & Zaid Al-Tameemi, 2023. "Comprehensive Review of Dust Properties and Their Influence on Photovoltaic Systems: Electrical, Optical, Thermal Models and Experimentation Techniques," Energies, MDPI, vol. 16(8), pages 1-31, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3401-:d:1121916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3401/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3401/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georgios Goudelis & Pavlos I. Lazaridis & Mahmoud Dhimish, 2022. "A Review of Models for Photovoltaic Crack and Hotspot Prediction," Energies, MDPI, vol. 15(12), pages 1-24, June.
    2. Sahouane, Nordine & Ziane, Abderrezzaq & Dabou, Rachid & Neçaibia, Ammar & Rouabhia, Abdelkrim & Lachtar, Salah & Blal, Mohammed & Slimani, Abdeldjalil & Boudjamaa, Tidjar, 2023. "Technical and economic study of the sand and dust accumulation impact on the energy performance of photovoltaic system in Algerian Sahara," Renewable Energy, Elsevier, vol. 205(C), pages 142-155.
    3. Jha, Aprajeeta & Tripathy, P.P., 2019. "Heat transfer modeling and performance evaluation of photovoltaic system in different seasonal and climatic conditions," Renewable Energy, Elsevier, vol. 135(C), pages 856-865.
    4. Ramadan J. Mustafa & Mohamed R. Gomaa & Mujahed Al-Dhaifallah & Hegazy Rezk, 2020. "Environmental Impacts on the Performance of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    5. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    6. Sameer Al-Dahidi & Salah Al-Nazer & Osama Ayadi & Shuruq Shawish & Nahed Omran, 2020. "Analysis of the Effects of Cell Temperature on the Predictability of the Solar Photovoltaic Power Production," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 208-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernardo Gonçalves & João F. P. Fernandes & João Paulo N. Torres & Ricardo A. Marques Lameirinhas, 2023. "Experimental Investigation and Modelling of Sediments Effect on the Performance of Cadmium Telluride Photovoltaic Panels," Energies, MDPI, vol. 16(12), pages 1-17, June.
    2. Mina Nezamisavojbolaghi & Erfan Davodian & Amal Bouich & Mouhaydine Tlemçani & Oumaima Mesbahi & Fernando M. Janeiro, 2023. "The Impact of Dust Deposition on PV Panels’ Efficiency and Mitigation Solutions: Review Article," Energies, MDPI, vol. 16(24), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    2. Mahyar Lasemi Imeni & Mohammad Sadegh Ghazizadeh & Mohammad Ali Lasemi & Zhenyu Yang, 2023. "Optimal Scheduling of a Hydrogen-Based Energy Hub Considering a Stochastic Multi-Attribute Decision-Making Approach," Energies, MDPI, vol. 16(2), pages 1-23, January.
    3. Kumar Ganti, Praful & Naik, Hrushikesh & Kanungo Barada, Mohanty, 2022. "Environmental impact analysis and enhancement of factors affecting the photovoltaic (PV) energy utilization in mining industry by sparrow search optimization based gradient boosting decision tree appr," Energy, Elsevier, vol. 244(PA).
    4. Larbi Chrifi-Alaoui & Saïd Drid & Mohammed Ouriagli & Driss Mehdi, 2023. "Overview of Photovoltaic and Wind Electrical Power Hybrid Systems," Energies, MDPI, vol. 16(12), pages 1-35, June.
    5. Miqdam T. Chaichan & Hussein A. Kazem & Ali H. A. Al-Waeli & Kamaruzzaman Sopian & Mohammed A. Fayad & Wissam H. Alawee & Hayder A. Dhahad & Wan Nor Roslam Wan Isahak & Ahmed A. Al-Amiery, 2023. "Sand and Dust Storms’ Impact on the Efficiency of the Photovoltaic Modules Installed in Baghdad: A Review Study with an Empirical Investigation," Energies, MDPI, vol. 16(9), pages 1-25, May.
    6. Muhammad Asim & Jassinnee Milano & Hassan Izhar Khan & Muhammad Hanzla Tahir & M. A. Mujtaba & Abd Halim Shamsuddin & Muhammad Abdullah & M. A. Kalam, 2022. "Investigation of Mono-Crystalline Photovoltaic Active Cooling Thermal System for Hot Climate of Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    7. Mohammed Yousri Silaa & Oscar Barambones & José Antonio Cortajarena & Patxi Alkorta & Aissa Bencherif, 2023. "PEMFC Current Control Using a Novel Compound Controller Enhanced by the Black Widow Algorithm: A Comprehensive Simulation Study," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    8. Kumar, Manish & Kumar, Arun, 2019. "Experimental validation of performance and degradation study of canal-top photovoltaic system," Applied Energy, Elsevier, vol. 243(C), pages 102-118.
    9. Ndeto, Martin Paul & Wekesa, David Wafula & Njoka, Francis & Kinyua, Robert, 2023. "Aeolian dust distribution, elemental concentration, characteristics and its effects on the conversion efficiency of crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 208(C), pages 481-491.
    10. Ibrahim Sufian Osman & Nasir Ghazi Hariri, 2022. "Thermal Investigation and Optimized Design of a Novel Solar Self-Driven Thermomechanical Actuator," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    11. Hasan Huseyin Coban, 2023. "Hydropower Planning in Combination with Batteries and Solar Energy," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    12. Ameur, Arechkik & Berrada, Asmae & Bouaichi, Abdellatif & Loudiyi, Khalid, 2022. "Long-term performance and degradation analysis of different PV modules under temperate climate," Renewable Energy, Elsevier, vol. 188(C), pages 37-51.
    13. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    14. Hegazy Rezk & Ahmed Fathy, 2020. "Stochastic Fractal Search Optimization Algorithm Based Global MPPT for Triple-Junction Photovoltaic Solar System," Energies, MDPI, vol. 13(18), pages 1-28, September.
    15. Gowtham Vedulla & Anbazhagan Geetha & Ramalingam Senthil, 2022. "Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-28, December.
    16. Koo Lee & Sung Bae Cho & Junsin Yi & Hyo Sik Chang, 2022. "Simplified Recovery Process for Resistive Solder Bond (RSB) Hotspots Caused by Poor Soldering of Crystalline Silicon Photovoltaic Modules Using Resin," Energies, MDPI, vol. 15(13), pages 1-19, June.
    17. Huang, Junchao & Chen, Xi & Peng, Jinqing & Yang, Hongxing, 2021. "Modelling analyses of the thermal property and heat transfer performance of a novel compositive PV vacuum glazing," Renewable Energy, Elsevier, vol. 163(C), pages 1238-1252.
    18. Hu, Weiwei & Li, Xingcai & Wang, Juan & Tian, Zihang & Zhou, Bin & Wu, Jinpeng & Li, Runmin & Li, Wencang & Ma, Ning & Kang, Jixuan & Wang, Yong & Tian, Jialong & Dai, Jibin, 2022. "Experimental research on the convective heat transfer coefficient of photovoltaic panel," Renewable Energy, Elsevier, vol. 185(C), pages 820-826.
    19. Krzysztof Pytel & Wiktor Hudy, 2022. "Use of Evolutionary Algorithm for Identifying Quantitative Impact of PM2.5 and PM10 on PV Power Generation," Energies, MDPI, vol. 15(21), pages 1-24, November.
    20. Małgorzata Jastrzębska, 2022. "Installation’s Conception in the Field of Renewable Energy Sources for the Needs of the Silesian Botanical Garden," Energies, MDPI, vol. 15(18), pages 1-28, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3401-:d:1121916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.