IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10002-d1178165.html
   My bibliography  Save this article

Hydropower Planning in Combination with Batteries and Solar Energy

Author

Listed:
  • Hasan Huseyin Coban

    (Department of Electrical Engineering, Ardahan University, 75002 Ardahan, Turkey)

Abstract

Battery storage is an important factor for power systems made up of renewable energy sources. Technologies for battery storage are crucial to accelerating the transition from fossil fuels to renewable energy. Between responding to electricity demand and using renewable energy sources, battery storage devices will become increasingly important. The aim of this study is to examine how battery storage affects a power system consisting of solar and hydroelectric energy and to draw conclusions about whether energy storage recommends a power system. The method involves designing a model of eight real cascade hydropower power plants and solving an optimization problem. This power system model is based on existing hydroelectric power plants powered by solar energy and batteries in the Turkish cities of Yozgat and Tokat. A case study with four different battery capacities in the system was carried out to assess the implications of energy storage in the power system. The stochastic nonlinear optimization problem was modeled for 72 h and solved with the MATLAB programming tool. The stochastic Quasi-Newton method performs very well in hybrid renewable problems arising from large-scale machine learning. When solar energy and batteries were added to the system, the maximum installed wind power was found to be 2 MW and 3.6 MW, respectively. In terms of profit and hydropower planning, a medium-proportion battery was found to be the most suitable. Increased variability in hydropower generation results from the installation of an energy storage system.

Suggested Citation

  • Hasan Huseyin Coban, 2023. "Hydropower Planning in Combination with Batteries and Solar Energy," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10002-:d:1178165
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10002/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10002/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Yunna & Zhang, Ting & Gao, Rui & Wu, Chenghao, 2021. "Portfolio planning of renewable energy with energy storage technologies for different applications from electricity grid," Applied Energy, Elsevier, vol. 287(C).
    2. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Ahmed, Salman & Mikulik, Jerzy, 2020. "Performance comparison of heuristic algorithms for optimization of hybrid off-grid renewable energy systems," Energy, Elsevier, vol. 210(C).
    3. Al-Khori, Khalid & Bicer, Yusuf & Koç, Muammer, 2021. "Comparative techno-economic assessment of integrated PV-SOFC and PV-Battery hybrid system for natural gas processing plants," Energy, Elsevier, vol. 222(C).
    4. Guo, Yi & Ming, Bo & Huang, Qiang & Liu, Pan & Wang, Yimin & Fang, Wei & Zhang, Wei, 2022. "Evaluating effects of battery storage on day-ahead generation scheduling of large hydro–wind–photovoltaic complementary systems," Applied Energy, Elsevier, vol. 324(C).
    5. Abadie, Luis M. & Goicoechea, Nestor, 2022. "Optimal management of a mega pumped hydro storage system under stochastic hourly electricity prices in the Iberian Peninsula," Energy, Elsevier, vol. 252(C).
    6. Ganesh Sampatrao Patil & Anwar Mulla & Subhojit Dawn & Taha Selim Ustun, 2022. "Profit Maximization with Imbalance Cost Improvement by Solar PV-Battery Hybrid System in Deregulated Power Market," Energies, MDPI, vol. 15(14), pages 1-21, July.
    7. Zhang, Yi & Cheng, Chuntian & Cai, Huaxiang & Jin, Xiaoyu & Jia, Zebin & Wu, Xinyu & Su, Huaying & Yang, Tiantian, 2022. "Long-term stochastic model predictive control and efficiency assessment for hydro-wind-solar renewable energy supply system," Applied Energy, Elsevier, vol. 316(C).
    8. Leonard, Matthew D. & Michaelides, Efstathios E. & Michaelides, Dimitrios N., 2020. "Energy storage needs for the substitution of fossil fuel power plants with renewables," Renewable Energy, Elsevier, vol. 145(C), pages 951-962.
    9. Coruhlu, Yakup Emre & Solgun, Necmettin & Baser, Volkan & Terzi, Fatih, 2022. "Revealing the solar energy potential by integration of GIS and AHP in order to compare decisions of the land use on the environmental plans," Land Use Policy, Elsevier, vol. 113(C).
    10. Koch, Christopher & Hirth, Lion, 2019. "Short-term electricity trading for system balancing: An empirical analysis of the role of intraday trading in balancing Germany's electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Rahil Parag Sheth & Narendra Singh Ranawat & Ayon Chakraborty & Rajesh Prasad Mishra & Manoj Khandelwal, 2023. "The Lithium-Ion Battery Recycling Process from a Circular Economy Perspective—A Review and Future Directions," Energies, MDPI, vol. 16(7), pages 1-16, April.
    12. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    13. Suman Kumar Saha & R. Kar & D. Mandal & S. P. Ghoshal, 2013. "A Novel Firefly Algorithm for Optimal Linear Phase FIR Filter Design," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 4(2), pages 29-48, April.
    14. Schill, Wolf-Peter, 2020. "Electricity Storage and the Renewable Energy Transition," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 4(10), pages 2059-2064.
    15. Colak, H. Ebru & Memisoglu, Tugba & Gercek, Yasin, 2020. "Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey," Renewable Energy, Elsevier, vol. 149(C), pages 565-576.
    16. Li, Xiao & Liu, Pan & Wang, Yibo & Yang, Zhikai & Gong, Yu & An, Rihui & Huang, Kangdi & Wen, Yan, 2022. "Derivation of operating rule curves for cascade hydropower reservoirs considering the spot market: A case study of the China's Qing River cascade-reservoir system," Renewable Energy, Elsevier, vol. 182(C), pages 1028-1038.
    17. Ramadan J. Mustafa & Mohamed R. Gomaa & Mujahed Al-Dhaifallah & Hegazy Rezk, 2020. "Environmental Impacts on the Performance of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    18. Büyüközkan, Gülçin & Karabulut, Yağmur & Mukul, Esin, 2018. "A novel renewable energy selection model for United Nations' sustainable development goals," Energy, Elsevier, vol. 165(PA), pages 290-302.
    19. Gital Durmaz, Yeşim & Bilgen, Bilge, 2020. "Multi-objective optimization of sustainable biomass supply chain network design," Applied Energy, Elsevier, vol. 272(C).
    20. Yu, Jiah & Ryu, Jun-Hyung & Lee, In-beum, 2019. "A stochastic optimization approach to the design and operation planning of a hybrid renewable energy system," Applied Energy, Elsevier, vol. 247(C), pages 212-220.
    21. Xu, Bin & Zhu, Feilin & Zhong, Ping-an & Chen, Juan & Liu, Weifeng & Ma, Yufei & Guo, Le & Deng, Xiaoliang, 2019. "Identifying long-term effects of using hydropower to complement wind power uncertainty through stochastic programming," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Jianhua & Ming, Bo & Liu, Pan & Huang, Qiang & Guo, Yi & Chang, Jianxia & Zhang, Wei, 2023. "Refining long-term operation of large hydro–photovoltaic–wind hybrid systems by nesting response functions," Renewable Energy, Elsevier, vol. 204(C), pages 359-371.
    2. Lu, Na & Wang, Guangyan & Su, Chengguo & Ren, Zaimin & Peng, Xiaoyue & Sui, Quan, 2024. "Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties," Applied Energy, Elsevier, vol. 353(PA).
    3. Cheng, Qian & Liu, Pan & Ming, Bo & Yang, Zhikai & Cheng, Lei & Liu, Zheyuan & Huang, Kangdi & Xu, Weifeng & Gong, Lanqiang, 2024. "Synchronizing short-, mid-, and long-term operations of hydro-wind-photovoltaic complementary systems," Energy, Elsevier, vol. 305(C).
    4. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    5. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    6. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. Ma, Chao & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Zhang, Pengfei & Liu, Lu, 2024. "Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty," Applied Energy, Elsevier, vol. 356(C).
    8. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    9. Li, Xiao & Liu, Pan & Feng, Maoyuan & Jordaan, Sarah M. & Cheng, Lei & Ming, Bo & Chen, Jie & Xie, Kang & Liu, Weibo, 2024. "Energy transition paradox: Solar and wind growth can hinder decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Talaat, M. & Elkholy, M.H. & Farahat, M.A., 2020. "Operating reserve investigation for the integration of wave, solar and wind energies," Energy, Elsevier, vol. 197(C).
    11. Tan, Qiaofeng & Zhang, Ziyi & Wen, Xin & Fang, Guohua & Xu, Shuo & Nie, Zhuang & Wang, Yanling, 2024. "Risk control of hydropower-photovoltaic multi-energy complementary scheduling based on energy storage allocation," Applied Energy, Elsevier, vol. 358(C).
    12. Andreij Selänniemi & Magnus Hellström & Margareta Björklund-Sänkiaho, 2024. "Long-Duration Energy Storage—A Literature Review on the Link between Variable Renewable Energy Penetration and Market Creation," Energies, MDPI, vol. 17(15), pages 1-30, July.
    13. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Jurasz, Jakub & Zhang, Yi & Lu, Jia, 2023. "Exploring the transition role of cascade hydropower in 100% decarbonized energy systems," Energy, Elsevier, vol. 279(C).
    14. Li, He & Liu, Pan & Guo, Shenglian & Zuo, Qiting & Cheng, Lei & Tao, Jie & Huang, Kangdi & Yang, Zhikai & Han, Dongyang & Ming, Bo, 2022. "Integrating teleconnection factors into long-term complementary operating rules for hybrid power systems: A case study of Longyangxia hydro-photovoltaic plant in China," Renewable Energy, Elsevier, vol. 186(C), pages 517-534.
    15. Ju, Chang & Ding, Tao & Jia, Wenhao & Mu, Chenggang & Zhang, Hongji & Sun, Yuge, 2023. "Two-stage robust unit commitment with the cascade hydropower stations retrofitted with pump stations," Applied Energy, Elsevier, vol. 334(C).
    16. Gong, Yu & Liu, Pan & Ming, Bo & Feng, Maoyuan & Huang, Kangdi & Wang, Yibo, 2022. "Identifying the functional form of operating rules for hydro–photovoltaic hybrid power systems," Energy, Elsevier, vol. 243(C).
    17. He, Yi & Guo, Su & Dong, Peixin & Huang, Jing & Zhou, Jianxu, 2023. "Hierarchical optimization of policy and design for standalone hybrid power systems considering lifecycle carbon reduction subsidy," Energy, Elsevier, vol. 262(PA).
    18. Cheng, Long & Ming, Bo & Cheng, Qiuyu & Jiang, Jianhua & Zhang, Hao & Jurasz, Jakub & Liu, Pan & Li, Meicheng, 2024. "Revealing electricity conversion mechanism of a cascade energy storage system," Energy, Elsevier, vol. 304(C).
    19. Kocabaldır, Canan & Yücel, Mehmet Ali, 2023. "GIS-based multicriteria decision analysis for spatial planning of solar photovoltaic power plants in Çanakkale province, Turkey," Renewable Energy, Elsevier, vol. 212(C), pages 455-467.
    20. Al-Lawati, Razan A.H. & Crespo-Vazquez, Jose L. & Faiz, Tasnim Ibn & Fang, Xin & Noor-E-Alam, Md., 2021. "Two-stage stochastic optimization frameworks to aid in decision-making under uncertainty for variable resource generators participating in a sequential energy market," Applied Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10002-:d:1178165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.