IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v382y2025ics0306261925000546.html
   My bibliography  Save this article

Multiagent optimization for short-term generation scheduling in hydropower-dominated hydro-wind-solar supply systems with spatiotemporal coupling constraints

Author

Listed:
  • Zhao, Hongye
  • Liao, Shengli
  • Liu, Benxi
  • Fang, Zhou
  • Wang, Huan
  • Cheng, Chuntian
  • Zhao, Jin

Abstract

Driven by the increasing demand for electricity and the rapid development of hydropower, wind, and solar energy, the joint scheduling of hydropower-dominated hydro-wind-solar supply systems (HHWSSSs) has emerged as a key research focus in power systems. However, the unique characteristics of the delicate scheduling requirements, complex constraints, and spatiotemporal coupling connections within HHWSSSs present significant issues for short-term generation scheduling (STGS), including excessive computation times for overall optimization, difficult model formulation, and low solution accuracy. Therefore, this paper develops a multiagent optimization model for STGS to address these issues efficiently. First, the centralized optimization of HHWSSS is transformed into the cooperative operation of multiagent systems based on the large system decomposition principle, which uses the hierarchical decomposition strategy rooted in basin characteristics to enhance the solution efficiency. Second, a bilevel nested multiagent optimization model aimed at minimizing water consumption, subsequent to the integration of the forecasted WSP output, is formulated by combining the unified optimal operation theory of multiagent systems to enable intelligent model construction. Finally, to improve solution quality, an improved alternating direction method of multipliers (IADMM) algorithm is employed to coordinate interactions among agents by implementing a modification strategy based on inflow balance and load matching principles. The feasibility and effectiveness of the proposed model are validated via typical daily datasets from different seasons. The results demonstrate that the proposed model can effectively determine the generation plan for HHWSSSs within a reasonable solution time and offer decision-makers flexible options to weigh the trade-off between operational efficiency and costs.

Suggested Citation

  • Zhao, Hongye & Liao, Shengli & Liu, Benxi & Fang, Zhou & Wang, Huan & Cheng, Chuntian & Zhao, Jin, 2025. "Multiagent optimization for short-term generation scheduling in hydropower-dominated hydro-wind-solar supply systems with spatiotemporal coupling constraints," Applied Energy, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261925000546
    DOI: 10.1016/j.apenergy.2025.125324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925000546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xudong & Yang, Weijia & Liao, Yiwen & Zhang, Shushu & Zheng, Yang & Zhao, Zhigao & Tang, Maojia & Cheng, Yongguang & Liu, Pan, 2024. "Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics," Applied Energy, Elsevier, vol. 360(C).
    2. Zhao, Hongye & Liao, Shengli & Ma, Xiangyu & Fang, Zhou & Cheng, Chuntian & Zhang, Zheng, 2024. "Short-term peak-shaving scheduling of a hydropower-dominated hydro-wind-solar photovoltaic hybrid system considering a shared multienergy coupling transmission channel," Applied Energy, Elsevier, vol. 372(C).
    3. David E. H. J. Gernaat & Harmen Sytze Boer & Vassilis Daioglou & Seleshi G. Yalew & Christoph Müller & Detlef P. Vuuren, 2021. "Climate change impacts on renewable energy supply," Nature Climate Change, Nature, vol. 11(2), pages 119-125, February.
    4. Wu, Xinyu & Wu, Yiyang & Cheng, Xilong & Cheng, Chuntian & Li, Zehong & Wu, Yongqi, 2023. "A mixed-integer linear programming model for hydro unit commitment considering operation constraint priorities," Renewable Energy, Elsevier, vol. 204(C), pages 507-520.
    5. Liao, Shengli & Liu, Zhanwei & Liu, Benxi & Cheng, Chuntian & Wu, Xinyu & Zhao, Zhipeng, 2021. "Daily peak shaving operation of cascade hydropower stations with sensitive hydraulic connections considering water delay time," Renewable Energy, Elsevier, vol. 169(C), pages 970-981.
    6. David E. H. J. Gernaat & Harmen Sytze Boer & Vassilis Daioglou & Seleshi G. Yalew & Christoph Müller & Detlef P. Vuuren, 2021. "Author Correction: Climate change impacts on renewable energy supply," Nature Climate Change, Nature, vol. 11(4), pages 362-362, April.
    7. Lu, Na & Wang, Guangyan & Su, Chengguo & Ren, Zaimin & Peng, Xiaoyue & Sui, Quan, 2024. "Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties," Applied Energy, Elsevier, vol. 353(PA).
    8. Guo, Yi & Ming, Bo & Huang, Qiang & Liu, Pan & Wang, Yimin & Fang, Wei & Zhang, Wei, 2022. "Evaluating effects of battery storage on day-ahead generation scheduling of large hydro–wind–photovoltaic complementary systems," Applied Energy, Elsevier, vol. 324(C).
    9. Zhao, Zhipeng & Yu, Zhihui & Kang, Yongxi & Wang, Jin & Cheng, Chuntian & Su, Huaying, 2025. "Hydro-photovoltaic complementary dispatch based on active regulation of cascade hydropower considering multi-transmission channel constraints," Applied Energy, Elsevier, vol. 377(PC).
    10. Fang, Zhou & Liao, Shengli & Zhao, Hongye & Cheng, Chuntian & Liu, Benxi & Wang, Huan & Li, Shushan, 2024. "An MILP model based on a processing strategy of complex multisource constraints for the short-term peak shaving operation of large-scale cascaded hydropower plants," Renewable Energy, Elsevier, vol. 231(C).
    11. Wang, Xiangzhen & Li, Yapeng & Gong, Shun & Hu, Xue & Cheng, Chuntian, 2025. "An enhanced micro-PSO method to deal with asymmetric electricity markets competition within hydropower cascade," Applied Energy, Elsevier, vol. 377(PA).
    12. Wu, Kunming & Li, Qiang & Chen, Ziyu & Lin, Jiayang & Yi, Yongli & Chen, Minyou, 2021. "Distributed optimization method with weighted gradients for economic dispatch problem of multi-microgrid systems," Energy, Elsevier, vol. 222(C).
    13. Zhang, Yi & Cheng, Chuntian & Cai, Huaxiang & Jin, Xiaoyu & Jia, Zebin & Wu, Xinyu & Su, Huaying & Yang, Tiantian, 2022. "Long-term stochastic model predictive control and efficiency assessment for hydro-wind-solar renewable energy supply system," Applied Energy, Elsevier, vol. 316(C).
    14. Cheng, Qian & Liu, Pan & Feng, Maoyuan & Cheng, Lei & Ming, Bo & Luo, Xinran & Liu, Weibo & Xu, Weifeng & Huang, Kangdi & Xia, Jun, 2023. "Complementary operation with wind and photovoltaic power induces the decrease in hydropower efficiency," Applied Energy, Elsevier, vol. 339(C).
    15. Wu, Yuqiang & Liao, Shengli & Liu, Benxi & Cheng, Chuntian & Zhao, Hongye & Fang, Zhou & Lu, Jia, 2024. "Short-term load distribution model for cascade giant hydropower stations with complex hydraulic and electrical connections," Renewable Energy, Elsevier, vol. 232(C).
    16. Fang, Zhou & Liao, Shengli & Cheng, Chuntian & Zhao, Hongye & Liu, Benxi & Su, Huaying, 2023. "Parallel improved DPSA algorithm for medium-term optimal scheduling of large-scale cascade hydropower plants," Renewable Energy, Elsevier, vol. 210(C), pages 134-147.
    17. Zhang, Pan & Mansouri, Seyed Amir & Rezaee Jordehi, Ahmad & Tostado-Véliz, Marcos & Alharthi, Yahya Z. & Safaraliev, Murodbek, 2024. "An ADMM-enabled robust optimization framework for self-healing scheduling of smart grids integrated with smart prosumers," Applied Energy, Elsevier, vol. 363(C).
    18. Feng, Zhong-kai & Huang, Qing-qing & Niu, Wen-jing & Su, Hua-ying & Li, Shu-shan & Wu, Hui-jun & Wang, Jia-yang, 2024. "Peak operation optimization of cascade hydropower reservoirs and solar power plants considering output forecasting uncertainty," Applied Energy, Elsevier, vol. 358(C).
    19. He, Mengjiao & Han, Shuo & Chen, Diyi & Zhao, Ziwen & Jurasz, Jakub & Mahmud, Md Apel & Liu, Pan & Deng, Mingjiang, 2024. "Optimizing cascade Hydropower-VRE hybrid systems: A novel approach addressing whole-process vibration to enhance operational safety," Energy, Elsevier, vol. 304(C).
    20. Cheng, Xianliang & Feng, Suzhen & Zheng, Hao & Wang, Jinwen & Liu, Shuangquan, 2022. "A hierarchical model in short-term hydro scheduling with unit commitment and head-dependency," Energy, Elsevier, vol. 251(C).
    21. Liao, Shengli & Liu, Huan & Liu, Benxi & Liu, Tian & Li, Chonghao & Su, Huaying, 2023. "Solution framework for short-term cascade hydropower system optimization operations based on the load decomposition strategy," Energy, Elsevier, vol. 277(C).
    22. Wang, Zizhao & Wu, Feng & Li, Yang & Li, Jingyan & Liu, Ying & Liu, Wenge, 2023. "Day-ahead dispatch approach for cascaded hydropower-photovoltaic complementary system based on two-stage robust optimization," Energy, Elsevier, vol. 265(C).
    23. Sebastian Sterl & Inne Vanderkelen & Celray James Chawanda & Daniel Russo & Robert J. Brecha & Ann Griensven & Nicole P. M. Lipzig & Wim Thiery, 2020. "Smart renewable electricity portfolios in West Africa," Nature Sustainability, Nature, vol. 3(9), pages 710-719, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Co-optimization for day-ahead scheduling and flexibility response mode of a hydro–wind–solar hybrid system considering forecast uncertainty of variable renewable energy," Energy, Elsevier, vol. 311(C).
    2. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    3. Cheng, Qian & Liu, Pan & Ming, Bo & Yang, Zhikai & Cheng, Lei & Liu, Zheyuan & Huang, Kangdi & Xu, Weifeng & Gong, Lanqiang, 2024. "Synchronizing short-, mid-, and long-term operations of hydro-wind-photovoltaic complementary systems," Energy, Elsevier, vol. 305(C).
    4. Zhao, Zhipeng & Yu, Zhihui & Kang, Yongxi & Wang, Jin & Cheng, Chuntian & Su, Huaying, 2025. "Hydro-photovoltaic complementary dispatch based on active regulation of cascade hydropower considering multi-transmission channel constraints," Applied Energy, Elsevier, vol. 377(PC).
    5. Shi, Yunhong & Wang, Honglei & Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2024. "Stochastic optimization of system configurations and operation of hybrid cascade hydro-wind-photovoltaic with battery for uncertain medium- and long-term load growth," Applied Energy, Elsevier, vol. 364(C).
    6. Su, Chengguo & Wang, Lingshuang & Sui, Quan & Wu, Huijun, 2025. "Optimal scheduling of a cascade hydro-thermal-wind power system integrating data centers and considering the spatiotemporal asynchronous transfer of energy resources," Applied Energy, Elsevier, vol. 377(PA).
    7. Cheng, Qian & Liu, Pan & Feng, Maoyuan & Cheng, Lei & Ming, Bo & Luo, Xinran & Liu, Weibo & Xu, Weifeng & Huang, Kangdi & Xia, Jun, 2023. "Complementary operation with wind and photovoltaic power induces the decrease in hydropower efficiency," Applied Energy, Elsevier, vol. 339(C).
    8. Zhao, Hongye & Liao, Shengli & Ma, Xiangyu & Fang, Zhou & Cheng, Chuntian & Zhang, Zheng, 2024. "Short-term peak-shaving scheduling of a hydropower-dominated hydro-wind-solar photovoltaic hybrid system considering a shared multienergy coupling transmission channel," Applied Energy, Elsevier, vol. 372(C).
    9. Cheng, Wenjie & Zhao, Zhipeng & Cheng, Chuntian & Yu, Zhihui & Gao, Ying, 2024. "Optimizing peak shaving operation in hydro-dominated hybrid power systems with limited distributional information on renewable energy uncertainty," Renewable Energy, Elsevier, vol. 237(PC).
    10. Lu, Na & Wang, Guangyan & Su, Chengguo & Ren, Zaimin & Peng, Xiaoyue & Sui, Quan, 2024. "Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties," Applied Energy, Elsevier, vol. 353(PA).
    11. Tang, Haotian & Li, Rui & Song, Tongqing & Ju, Shenghong, 2025. "Short-term optimal scheduling and comprehensive assessment of hydro-photovoltaic-wind systems augmented with hybrid pumped storage hydropower plants and diversified energy storage configurations," Applied Energy, Elsevier, vol. 389(C).
    12. Han, Shuo & Yuan, Yifan & He, Mengjiao & Zhao, Ziwen & Xu, Beibei & Chen, Diyi & Jurasz, Jakub, 2024. "A novel day-ahead scheduling model to unlock hydropower flexibility limited by vibration zones in hydropower-variable renewable energy hybrid system," Applied Energy, Elsevier, vol. 356(C).
    13. Lu, Na & Peng, Xiaoyue & Su, Chengguo & Wang, Guangyan & Sui, Quan, 2025. "Adaptive stochastic scheduling of cascade hydropower-photovoltaic power hybrid systems under climate change," Energy, Elsevier, vol. 319(C).
    14. Donald R. Noble & Shona Pennock & Daniel Coles & Timur Delahaye & Henry Jeffrey, 2025. "Quantifying the System Benefits of Ocean Energy in the Context of Variability: A UK Example," Energies, MDPI, vol. 18(14), pages 1-24, July.
    15. Shi, Yunhong & Li, Chengjiang & Wang, Honglei & Wang, Xiaolin & Negnevitsky, Michael, 2025. "A novel scheduling strategy of a hybrid wind-solar-hydro system for smoothing energy and power fluctuations," Energy, Elsevier, vol. 320(C).
    16. Mahsa Dehghan Manshadi & Milad Mousavi & M. Soltani & Amir Mosavi & Levente Kovacs, 2022. "Deep Learning for Modeling an Offshore Hybrid Wind–Wave Energy System," Energies, MDPI, vol. 15(24), pages 1-16, December.
    17. Zheng, Mingbo & Zhang, Xinyu, 2025. "Digitalization and renewable energy development: Analysis based on cross-country panel data," Energy, Elsevier, vol. 319(C).
    18. Yi, Yuxin & Zhang, Liming & Du, Lei & Sun, Helin, 2024. "Cross-regional integration of renewable energy and corporate carbon emissions: Evidence from China's cross-regional surplus renewable energy spot trading pilot," Energy Economics, Elsevier, vol. 135(C).
    19. Kang, Kai & Su, Yifan & Yang, Peng & Wang, Zhaojian & Liu, Feng, 2025. "Securing long-term dispatch of isolated microgrids with high-penetration renewable generation: A controlled evolution-based framework," Applied Energy, Elsevier, vol. 381(C).
    20. Hsiang-He Lee & Robert S. Arthur & Jean-Christophe Golaz & Thomas A. Edmunds & Jessica L. Wert & Matthew V. Signorotti & Jean-Paul Watson, 2025. "Assessment of Climate Change Impacts on Renewable Energy Resources in Western North America," Energies, MDPI, vol. 18(13), pages 1-27, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261925000546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.