IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3119-d1111047.html
   My bibliography  Save this article

Experimental Study of the Shear Characteristics of Fault Filled with Different Types of Gouge in Underground Gas Storage

Author

Listed:
  • Guosheng Ding

    (PetroChina Research Institute of Exploration and Development//CNPC Key Laboratory of Oil & Gas Underground Storage, Beijing 100083, China)

  • Hejuan Liu

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Debin Xia

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Duocai Wang

    (Pipe China West East Gas Pipeline Company, Shanghai 200120, China)

  • Famu Huang

    (Pipe China West East Gas Pipeline Company, Shanghai 200120, China)

  • Haitao Guo

    (Pipe China West East Gas Pipeline Company, Shanghai 200120, China)

  • Lihuan Xie

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yintong Guo

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Mingyang Wu

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Haijun Mao

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

In the current international situation, energy storage is an important means for countries to stabilize their energy supply, of which underground storage of natural gas is an important part. Depleted gas reservoir type underground gas storage (UGS) has become the key type of gas storage to be built by virtue of safety and environmental protection and low cost. The multi-cycle high injection and production rate of natural gas in the depleted gas reservoir type UGS will cause the in-situ stress disturbance. The slip risk of fault in the geological system increases greatly compared with that before the construction of the storage engineering, which becomes a great threat to the sealing of the gas storage. Reasonable injection and production strategy depend on the reliable assessment of the shear behavior of the fault belt, which can guarantee the sealing characteristics of the UGS geological system and the efficient operation of the UGS. Therefore, the shear behavior of the fault is studied by carrying out experiments, which can provide important parameters for the evaluation of fault stability. However, there is a large gap between the rock samples used in the previous experimental study and the natural faults, and it is difficult to reflect the shear failure characteristics of natural faults. In this paper, similar fault models based on high-precision three-dimensional scanners and engraving machines, filled with three types of fault gouge, are prepared for a batch of representative direct shear tests. The results show that the peak shear strength of the fault rocks with a shear surface is higher than that of the fault rocks with a tensile surface. Compared with the clay mineral content, the roughness of the fault surface is much more significant for the shear strength of the fault rock. For the fault rocks with similar fault surface morphology, the higher the clay content in the fault gouge, the greater the shear strength of the fault rocks. For the fault rocks with different fault surface morphology and the same fault gouge, the cohesion and internal friction angle of the tensile type is generally smaller than that of the shear type.

Suggested Citation

  • Guosheng Ding & Hejuan Liu & Debin Xia & Duocai Wang & Famu Huang & Haitao Guo & Lihuan Xie & Yintong Guo & Mingyang Wu & Haijun Mao, 2023. "Experimental Study of the Shear Characteristics of Fault Filled with Different Types of Gouge in Underground Gas Storage," Energies, MDPI, vol. 16(7), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3119-:d:1111047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3119/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3119/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    2. Nan Zhang & Wei Liu & Yun Zhang & Pengfei Shan & Xilin Shi, 2020. "Microscopic Pore Structure of Surrounding Rock for Underground Strategic Petroleum Reserve (SPR) Caverns in Bedded Rock Salt," Energies, MDPI, vol. 13(7), pages 1-22, March.
    3. Yintong Guo & Qiqi Ying & Duocai Wang & Hong Zhang & Famu Huang & Haitao Guo & Lei Hou & Mingnan Xu & Hejuan Liu & Debin Xia, 2022. "Experimental Study on Shear Characteristics of Structural Plane with Different Fluctuation Characteristics," Energies, MDPI, vol. 15(20), pages 1-17, October.
    4. H. W. Zhou & H. Xie, 2003. "Direct Estimation of the Fractal Dimensions of a Fracture Surface of Rock," Surface Review and Letters (SRL), World Scientific Publishing Co. Pte. Ltd., vol. 10(05), pages 751-762.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jinlong & Shi, Xilin & Zhang, Shuai, 2020. "Construction modeling and parameter optimization of multi-step horizontal energy storage salt caverns," Energy, Elsevier, vol. 203(C).
    2. Huiyong Song & Song Zhu & Jinlong Li & Zhuoteng Wang & Qingdong Li & Zexu Ning, 2023. "Design Criteria for the Construction of Energy Storage Salt Cavern Considering Economic Benefits and Resource Utilization," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    3. Bohang Liu & Lei Wang & Yintong Guo & Jing Li & Hanzhi Yang, 2022. "Experimental Investigation on the Evolution of Tensile Mechanical Behavior of Cement Stone Considering the Variation of Burial Depth," Energies, MDPI, vol. 15(19), pages 1-16, October.
    4. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Lei Wang & Bohang Liu & Hanzhi Yang & Yintong Guo & Jing Li & Hejuan Liu, 2022. "Experimental Study on the Compressive and Shear Mechanical Properties of Cement–Formation Interface Considering Surface Roughness and Drilling Mud Contamination," Energies, MDPI, vol. 15(17), pages 1-17, September.
    6. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Zhang, Xiong & Liu, Wei & Jiang, Deyi & Qiao, Weibiao & Liu, Enbin & Zhang, Nan & Fan, Jinyang, 2021. "Investigation on the influences of interlayer contents on stability and usability of energy storage caverns in bedded rock salt," Energy, Elsevier, vol. 231(C).
    8. Chen, Wei & Liu, Jie & Peng, Wenqing & Zhao, Yanlin & Luo, Shilin & Wan, Wen & Wu, Qiuhong & Wang, Yuanzeng & Li, Shengnan & Tang, Xiaoyu & Zeng, Xiantao & Wu, Xiaofan & Zhou, Yu & Xie, Senlin, 2023. "Aging deterioration of mechanical properties on coal-rock combinations considering hydro-chemical corrosion," Energy, Elsevier, vol. 282(C).
    9. Wei, Xinxing & Shi, Xilin & Li, Yinping & Liu, Hejuan & Li, Peng & Ban, Shengnan & Liang, Xiaopeng & Zhu, Shijie & Zhao, Kai & Yang, Kun & Huang, Si & Yang, Chunhe, 2023. "Advances in research on gas storage in sediment void of salt cavern in China," Energy, Elsevier, vol. 284(C).
    10. Hongling Ma & Xinxing Wei & Xilin Shi & Xiaopeng Liang & Weizheng Bai & Lingzhi Ge, 2022. "Evaluation Methods of Salt Pillar Stability of Salt Cavern Energy Storage," Energies, MDPI, vol. 15(20), pages 1-24, October.
    11. Jingcui Li & Jifang Wan & Hangming Liu & Maria Jose Jurado & Yuxian He & Guangjie Yuan & Yan Xia, 2022. "Stability Analysis of a Typical Salt Cavern Gas Storage in the Jintan Area of China," Energies, MDPI, vol. 15(11), pages 1-15, June.
    12. Aleksandra Małachowska & Natalia Łukasik & Joanna Mioduska & Jacek Gębicki, 2022. "Hydrogen Storage in Geological Formations—The Potential of Salt Caverns," Energies, MDPI, vol. 15(14), pages 1-19, July.
    13. Xiaolong Li & Chen Cao & Xin Lin, 2021. "Improved Image Analysis Method to Evaluate Tracking Property under Successive Flashover Based on Fractal Theory," Energies, MDPI, vol. 14(24), pages 1-13, December.
    14. Côté, Elizabeth & Salm, Sarah, 2022. "Risk-adjusted preferences of utility companies and institutional investors for battery storage and green hydrogen investment," Energy Policy, Elsevier, vol. 163(C).
    15. Li, Wenjing & Nan, Xing & Chen, Jiasong & Yang, Chunhe, 2021. "Investigation of thermal-mechanical effects on salt cavern during cycling loading," Energy, Elsevier, vol. 232(C).
    16. Abbassi, Abdelkader & Abbassi, Rabeh & Heidari, Ali Asghar & Oliva, Diego & Chen, Huiling & Habib, Arslan & Jemli, Mohamed & Wang, Mingjing, 2020. "Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach," Energy, Elsevier, vol. 198(C).
    17. Zhang, Xiong & Liu, Wei & Chen, Jie & Jiang, Deyi & Fan, Jinyang & Daemen, J.J.K. & Qiao, Weibiao, 2022. "Large-scale CO2 disposal/storage in bedded rock salt caverns of China: An evaluation of safety and suitability," Energy, Elsevier, vol. 249(C).
    18. Fangxuan Chen & Zhiwei Ma & Hadi Nasrabadi & Bailian Chen & Mohamed Mehana & Jolante Wieke Van Wijk, 2022. "Technical and Economic Feasibility Analysis of Underground Hydrogen Storage: A Case Study in Intermountain-West Region USA," Papers 2209.03239, arXiv.org.
    19. Singh, Harpreet, 2022. "Hydrogen storage in inactive horizontal shale gas wells: Techno-economic analysis for Haynesville shale," Applied Energy, Elsevier, vol. 313(C).
    20. Nan Zhang & Wei Liu & Yun Zhang & Pengfei Shan & Xilin Shi, 2020. "Microscopic Pore Structure of Surrounding Rock for Underground Strategic Petroleum Reserve (SPR) Caverns in Bedded Rock Salt," Energies, MDPI, vol. 13(7), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3119-:d:1111047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.