Estimation of underground hydrogen storage capacity in depleted gas reservoirs using CO2 as cushion gas
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.124093
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Blay-Roger, Rubén & Bach, Wolfgang & Bobadilla, Luis F. & Reina, Tomas Ramirez & Odriozola, José A. & Amils, Ricardo & Blay, Vincent, 2024. "Natural hydrogen in the energy transition: Fundamentals, promise, and enigmas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Lankof, Leszek & Urbańczyk, Kazimierz & Tarkowski, Radosław, 2022. "Assessment of the potential for underground hydrogen storage in salt domes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Zhou, Yuekuan, 2022. "Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
- Tarkowski, Radosław & Lankof, Leszek & Luboń, Katarzyna & Michalski, Jan, 2024. "Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland," Applied Energy, Elsevier, vol. 355(C).
- Chai, Maojie & Chen, Zhangxin & Nourozieh, Hossein & Yang, Min, 2023. "Numerical simulation of large-scale seasonal hydrogen storage in an anticline aquifer: A case study capturing hydrogen interactions and cushion gas injection," Applied Energy, Elsevier, vol. 334(C).
- Zhang, Sufang & Li, Xingmei, 2012. "Large scale wind power integration in China: Analysis from a policy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1110-1115.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Asghari, Milad & Emami Niri, Mohammad & Sedaee, Behnam, 2025. "UHSNet: Deep learning-based smart proxy modeling for underground hydrogen storage," Energy, Elsevier, vol. 329(C).
- Deng, Peng & Chen, Zhangxin & Peng, Xiaolong & Li, Xiaobo & Di, Chaojie & Zhu, Suyang & Wang, Chaowen & Song, Yilei & Shi, Kanyuan, 2025. "Enabling fractured-vuggy reservoirs for large-scale gas storage: Green hydrogen, natural gas, and carbon dioxide," Renewable Energy, Elsevier, vol. 246(C).
- Davoodi, Shadfar & Al-Shargabi, Mohammed & Wood, David A. & Longe, Promise O. & Mehrad, Mohammad & Rukavishnikov, Valeriy S., 2025. "Underground hydrogen storage: A review of technological developments, challenges, and opportunities," Applied Energy, Elsevier, vol. 381(C).
- He, Youwei & Qiu, Shuai & Qin, Jiazheng & Tang, Yong & Yu, Wei & Wang, Yunchuan & Du, Xinyan & Rui, Zhenhua, 2025. "Feasibility of CO2-water alternate flooding and CO2 storage in tight oil reservoirs with complex fracture networks based on embedded discrete fracture model," Energy, Elsevier, vol. 319(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bi, Zhenhui & Guo, Yintong & Yang, Chunhe & Yang, Hanzhi & Wang, Lei & He, Yuting & Guo, Wuhao, 2025. "Numerical investigation of fluid dynamics in aquifers for seasonal large-scale hydrogen storage using compositional simulations," Renewable Energy, Elsevier, vol. 239(C).
- Wei, Yongbo & Liu, Quanyou & Zhu, Dongya & Meng, Qingqiang & Xu, Huiyuan & Zhang, Wang & Wu, Xiaoqi & Li, Pengpeng & Huang, Xiaowei & Mou, Yicheng & Jin, Zhijun, 2025. "Helium and natural hydrogen in the Bohai Bay Basin, China: Occurrence, resources, and exploration prospects," Applied Energy, Elsevier, vol. 383(C).
- Nicolò Santi Vasile, 2024. "A Comprehensive Review of Biogeochemical Modeling of Underground Hydrogen Storage: A Step Forward in Achieving a Multi-Scale Approach," Energies, MDPI, vol. 17(23), pages 1-31, December.
- Yuan, Chen & Yu, Xinran & Li, Peijin & Shan, Xijie & Hong, Weimin & Li, Yuxing & Chen, Zhangxing & Liu, Cuiwei & Wu, Keliu, 2025. "From micro to macro: A comprehensive review for underground hydrogen storage technologies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 224(C).
- Khandoozi, Sabber & Li, Pei & Ershadnia, Reza & Dai, Zhenxue & Zhang, Zhien & Stauffer, Philip H. & Mehana, Mohamed & Cole, David R. & Soltanian, Mohamad Reza, 2025. "An integrated approach for optimizing geological hydrogen storage," Applied Energy, Elsevier, vol. 381(C).
- Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
- Davoodi, Shadfar & Al-Shargabi, Mohammed & Wood, David A. & Longe, Promise O. & Mehrad, Mohammad & Rukavishnikov, Valeriy S., 2025. "Underground hydrogen storage: A review of technological developments, challenges, and opportunities," Applied Energy, Elsevier, vol. 381(C).
- Xiong, Zanfu & Hou, Jian & Du, Qingjun & Chen, Zheng & Lu, Xiangquan & Liu, Yongge & Wei, Bei & Lu, Teng, 2025. "A comprehensive review of H2 physical behavior and H2-rock-microbial interactions in underground hydrogen storage," Energy, Elsevier, vol. 326(C).
- Katarzyna Luboń & Radosław Tarkowski, 2024. "Hydrogen Storage in Deep Saline Aquifers: Non-Recoverable Cushion Gas after Storage," Energies, MDPI, vol. 17(6), pages 1-17, March.
- Zhu, Shijie & Shi, Xilin & Yang, Chunhe & Li, Yinping & Li, Hang & Yang, Kun & Wei, Xinxing & Bai, Weizheng & Liu, Xin, 2023. "Hydrogen loss of salt cavern hydrogen storage," Renewable Energy, Elsevier, vol. 218(C).
- Jahanbakhsh, Amir & Louis Potapov-Crighton, Alexander & Mosallanezhad, Abdolali & Tohidi Kaloorazi, Nina & Maroto-Valer, M. Mercedes, 2024. "Underground hydrogen storage: A UK perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Deng, Peng & Ma, Haoming & Song, Jinghan & Peng, Xiaolong & Zhu, Suyang & Xue, Dan & Jiang, Liangliang & Chen, Zhangxin, 2025. "Carbon dioxide as cushion gas for large-scale underground hydrogen storage: Mechanisms and implications," Applied Energy, Elsevier, vol. 388(C).
- Mao, Shaowen & Chen, Bailian & Malki, Mohamed & Chen, Fangxuan & Morales, Misael & Ma, Zhiwei & Mehana, Mohamed, 2024. "Efficient prediction of hydrogen storage performance in depleted gas reservoirs using machine learning," Applied Energy, Elsevier, vol. 361(C).
- Tarkowski, Radosław & Lankof, Leszek & Luboń, Katarzyna & Michalski, Jan, 2024. "Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland," Applied Energy, Elsevier, vol. 355(C).
- Zhang, Shengli & Xiao, Ning & Xu, Suguo & Li, Jing & Zhang, Shitao & Yang, Yunchuan, 2025. "Feasibility and stability study of single-well retreating horizontal cavern gas storage in deep bedded salt rock of Liulin, China," Energy, Elsevier, vol. 333(C).
- Wang, Heng & Xin, Yuchen & Kou, Zuhao & He, Chunyu & Li, Yunfei & Wang, Tongtong, 2024. "Unveil the role of engineering parameters on hydrogen recovery in deep saline aquifer, Rock Springs Uplift, Wyoming," Renewable Energy, Elsevier, vol. 225(C).
- Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
- Ming, Zeng & Song, Xue & Mingjuan, Ma & Xiaoli, Zhu, 2013. "New energy bases and sustainable development in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 169-185.
- Bohang Liu & Lei Wang & Yintong Guo & Jing Li & Hanzhi Yang, 2022. "Experimental Investigation on the Evolution of Tensile Mechanical Behavior of Cement Stone Considering the Variation of Burial Depth," Energies, MDPI, vol. 15(19), pages 1-16, October.
- Zhao, Xiaoli & Cai, Qiong & Zhang, Sufang & Luo, Kaiyan, 2017. "The substitution of wind power for coal-fired power to realize China's CO2 emissions reduction targets in 2020 and 2030," Energy, Elsevier, vol. 120(C), pages 164-178.
More about this item
Keywords
; ; ; ; ; ;JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:375:y:2024:i:c:s0306261924014764. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/appene/v375y2024ics0306261924014764.html