IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v246y2025ics0960148125005683.html
   My bibliography  Save this article

Enabling fractured-vuggy reservoirs for large-scale gas storage: Green hydrogen, natural gas, and carbon dioxide

Author

Listed:
  • Deng, Peng
  • Chen, Zhangxin
  • Peng, Xiaolong
  • Li, Xiaobo
  • Di, Chaojie
  • Zhu, Suyang
  • Wang, Chaowen
  • Song, Yilei
  • Shi, Kanyuan

Abstract

Fractured-vuggy reservoirs typically exhibit flow capacities up to ten times higher than conventional sandstone reservoirs, providing a significant advantage for Underground Gas Storage (UGS). However, their complex connectivity introduces uncertainty in gas flow pathways, leaving these potential benefits largely unexplored. To reuse this type of reservoir for UGS, we developed a flow velocity model that effectively captures the influence of multi-scale pore and fracture networks on gas flow behavior. The classified flow pathways were subsequently employed to evaluate the injection–production behavior of hydrogen, natural gas, and carbon dioxide within UGS. The results indicate that fractured-vuggy reservoirs can deliver effective peak-shaving capacity and are well-suited for UGS. Notably, hydrogen achieved a recovery factor of up to 88.5 %, and the economic analysis demonstrates that profitable storage is achievable at the current cost level of natural gas storage. The recovery factor of natural gas exceeded 92 %, yielding a net present value of $20.7 M, whereas carbon dioxide performance was highly dependent on tailored injection strategies and capture costs. This discovery suggests the potential of fractured-vuggy reservoirs for UGS and provides technical guidance for future site selection.

Suggested Citation

  • Deng, Peng & Chen, Zhangxin & Peng, Xiaolong & Li, Xiaobo & Di, Chaojie & Zhu, Suyang & Wang, Chaowen & Song, Yilei & Shi, Kanyuan, 2025. "Enabling fractured-vuggy reservoirs for large-scale gas storage: Green hydrogen, natural gas, and carbon dioxide," Renewable Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005683
    DOI: 10.1016/j.renene.2025.122906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125005683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.