IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v246y2025ics0960148125005683.html
   My bibliography  Save this article

Enabling fractured-vuggy reservoirs for large-scale gas storage: Green hydrogen, natural gas, and carbon dioxide

Author

Listed:
  • Deng, Peng
  • Chen, Zhangxin
  • Peng, Xiaolong
  • Li, Xiaobo
  • Di, Chaojie
  • Zhu, Suyang
  • Wang, Chaowen
  • Song, Yilei
  • Shi, Kanyuan

Abstract

Fractured-vuggy reservoirs typically exhibit flow capacities up to ten times higher than conventional sandstone reservoirs, providing a significant advantage for Underground Gas Storage (UGS). However, their complex connectivity introduces uncertainty in gas flow pathways, leaving these potential benefits largely unexplored. To reuse this type of reservoir for UGS, we developed a flow velocity model that effectively captures the influence of multi-scale pore and fracture networks on gas flow behavior. The classified flow pathways were subsequently employed to evaluate the injection–production behavior of hydrogen, natural gas, and carbon dioxide within UGS. The results indicate that fractured-vuggy reservoirs can deliver effective peak-shaving capacity and are well-suited for UGS. Notably, hydrogen achieved a recovery factor of up to 88.5 %, and the economic analysis demonstrates that profitable storage is achievable at the current cost level of natural gas storage. The recovery factor of natural gas exceeded 92 %, yielding a net present value of $20.7 M, whereas carbon dioxide performance was highly dependent on tailored injection strategies and capture costs. This discovery suggests the potential of fractured-vuggy reservoirs for UGS and provides technical guidance for future site selection.

Suggested Citation

  • Deng, Peng & Chen, Zhangxin & Peng, Xiaolong & Li, Xiaobo & Di, Chaojie & Zhu, Suyang & Wang, Chaowen & Song, Yilei & Shi, Kanyuan, 2025. "Enabling fractured-vuggy reservoirs for large-scale gas storage: Green hydrogen, natural gas, and carbon dioxide," Renewable Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005683
    DOI: 10.1016/j.renene.2025.122906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125005683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Miyake, Saori & Teske, Sven & Rispler, Jonathan & Feenstra, Maartje, 2024. "Solar and wind energy potential under land-resource constrained conditions in the Group of Twenty (G20)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Song, Yilei & Song, Zhaojie & Chen, Zhangxin & Zhang, Lichao & Zhang, Yunfei & Feng, Dong & Wu, Zhengbin & Wu, Jiapeng, 2024. "Fluid phase behavior in multi-scale shale reservoirs with nano-confinement effect," Energy, Elsevier, vol. 289(C).
    3. Dmitry Mardashov & Victor Duryagin & Shamil Islamov, 2021. "Technology for Improving the Efficiency of Fractured Reservoir Development Using Gel-Forming Compositions," Energies, MDPI, vol. 14(24), pages 1-14, December.
    4. Karlilar Pata, Selin & Pata, Ugur Korkut & Wang, Qiang, 2025. "Ecological power of energy storage, clean fuel innovation, and energy-related research and development technologies," Renewable Energy, Elsevier, vol. 241(C).
    5. Chai, Maojie & Chen, Zhangxin & Nourozieh, Hossein & Yang, Min, 2023. "Numerical simulation of large-scale seasonal hydrogen storage in an anticline aquifer: A case study capturing hydrogen interactions and cushion gas injection," Applied Energy, Elsevier, vol. 334(C).
    6. Deng, Peng & Ma, Haoming & Song, Jinghan & Peng, Xiaolong & Zhu, Suyang & Xue, Dan & Jiang, Liangliang & Chen, Zhangxin, 2025. "Carbon dioxide as cushion gas for large-scale underground hydrogen storage: Mechanisms and implications," Applied Energy, Elsevier, vol. 388(C).
    7. Abu Danish Aiman Bin Abu Sofian & Hooi Ren Lim & Heli Siti Halimatul Munawaroh & Zengling Ma & Kit Wayne Chew & Pau Loke Show, 2024. "Machine learning and the renewable energy revolution: Exploring solar and wind energy solutions for a sustainable future including innovations in energy storage," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(4), pages 3953-3978, August.
    8. Deng, Peng & Chen, Zhangxin & Peng, Xiaolong & Zhu, Suyang & Liu, Benjieming & Lei, Xuantong & Di, Chaojie, 2025. "Converting underground natural gas storage for hydrogen: A review of advantages, challenges and economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    9. He, Youwei & Xie, Yixiang & Qiao, Yu & Qin, Jiazheng & Tang, Yong, 2024. "Estimation of underground hydrogen storage capacity in depleted gas reservoirs using CO2 as cushion gas," Applied Energy, Elsevier, vol. 375(C).
    10. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    11. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    12. Dewevre, Florent & Lacroix, Clément & Loubar, Khaled & Poncet, Sébastien, 2024. "Carbon dioxide energy storage systems: Current researches and perspectives," Renewable Energy, Elsevier, vol. 224(C).
    13. Deng, Peng & Chen, Zhangxin & Peng, Xiaolong & Wang, Jianfeng & Zhu, Suyang & Ma, Haoming & Wu, Zhengbin, 2023. "Optimized lower pressure limit for condensate underground gas storage using a dynamic pseudo-component model," Energy, Elsevier, vol. 285(C).
    14. Nong, Kaisen & Sun, Wenhao & Shen, Lei & Sun, Dongqi & Lin, Jiaan, 2024. "Future pathways for green hydrogen: Analyzing the nexus of renewable energy consumption and hydrogen development in Chinese cities," Renewable Energy, Elsevier, vol. 237(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Peng & Ma, Haoming & Song, Jinghan & Peng, Xiaolong & Zhu, Suyang & Xue, Dan & Jiang, Liangliang & Chen, Zhangxin, 2025. "Carbon dioxide as cushion gas for large-scale underground hydrogen storage: Mechanisms and implications," Applied Energy, Elsevier, vol. 388(C).
    2. Deng, Peng & Chen, Zhangxin & Peng, Xiaolong & Zhu, Suyang & Liu, Benjieming & Lei, Xuantong & Di, Chaojie, 2025. "Converting underground natural gas storage for hydrogen: A review of advantages, challenges and economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    3. Song, Yilei & Song, Zhaojie & Mo, Yasi & Meng, Yufan & Zhou, Qiancheng & Jing, Yahao & Tian, Shouceng & Chen, Zhangxin, 2025. "Maturity-dependent thermodynamic and flow characteristics in continental shale oils," Energy, Elsevier, vol. 318(C).
    4. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    5. Wang, Qing & Zhang, Mengchuan & Zhou, Fujian & Fei, Hongtao & Yu, Sen & Su, Hang & Liang, Tianbo & Chen, Zhangxin, 2024. "Experiment and prediction of enhanced gas storage capacity in depleted gas reservoirs for clean energy applications," Renewable Energy, Elsevier, vol. 237(PC).
    6. Bi, Zhenhui & Guo, Yintong & Yang, Chunhe & Yang, Hanzhi & Wang, Lei & He, Yuting & Guo, Wuhao, 2025. "Numerical investigation of fluid dynamics in aquifers for seasonal large-scale hydrogen storage using compositional simulations," Renewable Energy, Elsevier, vol. 239(C).
    7. Katarzyna Luboń & Radosław Tarkowski, 2024. "Hydrogen Storage in Deep Saline Aquifers: Non-Recoverable Cushion Gas after Storage," Energies, MDPI, vol. 17(6), pages 1-17, March.
    8. Shuhao Zhang & Xuetong Li & Daqian Shi, 2025. "How does digital finance affect energy consumption in China? Empirical evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(5), pages 10719-10735, May.
    9. Wang, Bo & Wang, Jianda, 2025. "China’s green digital era: How does digital economy enable green economic growth?," Innovation and Green Development, Elsevier, vol. 4(1).
    10. Feifei Yu & Jiayi Mao & Qing Jiang, 2025. "Accumulate thickly to grow thinly: the U-shaped relationship between digital transformation and corporate carbon performance," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 2135-2160, January.
    11. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    12. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    13. Chen, Yanpeng & Masron, Tajul Ariffin, 2025. "The role of media visibility in mitigating greenwashing driven by executive environmental cognition: Evidence from China," Finance Research Letters, Elsevier, vol. 74(C).
    14. Sainan Cheng & Guohua Qu, 2023. "Research on the Effect of Digital Economy on Carbon Emissions under the Background of “Double Carbon”," IJERPH, MDPI, vol. 20(6), pages 1-27, March.
    15. Cao, Lihong & Wang, Yueying & Yu, Jinyi & Zhang, Yikai & Yin, Xiaoye, 2024. "The impact of digital economy on low-carbon transition: What is the role of human capital?," Finance Research Letters, Elsevier, vol. 69(PB).
    16. Inzir Raupov & Mikhail Rogachev & Julia Sytnik, 2023. "Design of a Polymer Composition for the Conformance Control in Heterogeneous Reservoirs," Energies, MDPI, vol. 16(1), pages 1-18, January.
    17. Zhao, Xiaoyang & Weng, Zongyuan, 2024. "Digital dividend or divide: The digital economy and urban entrepreneurial activity," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    18. Taghizadeh-Hesary, Farhad & Dong, Kangyin & Zhao, Congyu & Phoumin, Han, 2023. "Can financial and economic means accelerate renewable energy growth in the climate change era? The case of China," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 730-743.
    19. Hui Shu & Lizhen Zhan & Xiaowei Lin & Xideng Zhou, 2023. "Coordination measure for coupling system of digital economy and rural logistics: An evidence from China," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-25, April.
    20. Chen, Zhiang & Xu, Wenlong, 2025. "The role of the digital economy in enhancing green innovation: Evidence from Chinese A-share listed enterprises," Finance Research Letters, Elsevier, vol. 71(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.