IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v326y2025ics0360544225018687.html
   My bibliography  Save this article

A comprehensive review of H2 physical behavior and H2-rock-microbial interactions in underground hydrogen storage

Author

Listed:
  • Xiong, Zanfu
  • Hou, Jian
  • Du, Qingjun
  • Chen, Zheng
  • Lu, Xiangquan
  • Liu, Yongge
  • Wei, Bei
  • Lu, Teng

Abstract

The global imperative to achieve carbon neutrality has significantly intensified research efforts toward large-scale underground hydrogen storage. Nevertheless, the efficient implementation of underground hydrogen storage systems faces substantial challenges due to physical and chemical losses of H2, as well as complex H2-rock-microbial interactions. A comprehensive understanding of these interactions, coupled with the development of robust H2 consumption assessment models, is therefore critically needed. This review systematically addresses the key physical and biochemical challenges in underground hydrogen storage, including H2 dissolution, adsorption, diffusion, capillary trapping, and H2-mineral-microbial interactions. From both experimental and simulation perspectives, the review critically analyzes the influence of critical factors such as temperature, pressure, saline electrolyte composition, rock mineralogy, and heterogeneous pore structures on the physical behavior of H2. Furthermore, the chemical characteristics of H2 are examined, with a focus on alterations to porous structures induced by H2-mineral reactions and pore blockage caused by hydrogenotrophic microorganisms. Existing models for characterizing the physical behavior of H2 and H2-rock-microbial interactions are evaluated, with an emphasis on their strengths and limitations. Additionally, the biological, mechanical, and seepage behaviors associated with the transport of multi-state hydrogenotrophic microorganisms, microfracture, and cyclic H2 storage are discussed. This review provides critical insights for refining characterization models of hydrogenotrophic microorganisms and improving H2 recovery rates in underground hydrogen storage. By advancing the understanding and optimization of underground hydrogen storage, this work contributes to the development of sustainable, carbon-neutral energy systems.

Suggested Citation

  • Xiong, Zanfu & Hou, Jian & Du, Qingjun & Chen, Zheng & Lu, Xiangquan & Liu, Yongge & Wei, Bei & Lu, Teng, 2025. "A comprehensive review of H2 physical behavior and H2-rock-microbial interactions in underground hydrogen storage," Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:energy:v:326:y:2025:i:c:s0360544225018687
    DOI: 10.1016/j.energy.2025.136226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225018687
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Yue & Zhou, Suyang & Wang, Jihua & Chou, Jun & Fang, Yunhui & Pan, Guangsheng & Gu, Wei, 2020. "Feasibility analysis of utilising underground hydrogen storage facilities in integrated energy system: Case studies in China," Applied Energy, Elsevier, vol. 269(C).
    2. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Gao, Zheng & Li, Bobo & Li, Jianhua & Jia, Lidan & Wang, Zhonghui, 2023. "Adsorption characteristics and thermodynamic analysis of shale in northern Guizhou, China: Measurement, modeling and prediction," Energy, Elsevier, vol. 262(PA).
    4. Rosalia Trias & Bénédicte Ménez & Paul Campion & Yvan Zivanovic & Léna Lecourt & Aurélien Lecoeuvre & Philippe Schmitt-Kopplin & Jenny Uhl & Sigurður R. Gislason & Helgi A. Alfreðsson & Kiflom G. Mesf, 2017. "High reactivity of deep biota under anthropogenic CO2 injection into basalt," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    5. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    6. Lankof, Leszek & Urbańczyk, Kazimierz & Tarkowski, Radosław, 2022. "Assessment of the potential for underground hydrogen storage in salt domes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Thaysen, Eike M. & McMahon, Sean & Strobel, Gion J. & Butler, Ian B. & Ngwenya, Bryne T. & Heinemann, Niklas & Wilkinson, Mark & Hassanpouryouzband, Aliakbar & McDermott, Christopher I. & Edlmann, Kat, 2021. "Estimating microbial growth and hydrogen consumption in hydrogen storage in porous media," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Xu, Tingting & Gao, Weijun & Qian, Fanyue & Li, Yanxue, 2022. "The implementation limitation of variable renewable energies and its impacts on the public power grid," Energy, Elsevier, vol. 239(PA).
    9. Mohammad Jafari & Jongwon Jung, 2017. "Direct Measurement of Static and Dynamic Contact Angles Using a Random Micromodel Considering Geological CO 2 Sequestration," Sustainability, MDPI, vol. 9(12), pages 1-17, December.
    10. Tarkowski, Radoslaw, 2019. "Underground hydrogen storage: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 86-94.
    11. Jahanbani Veshareh, Moein & Thaysen, Eike Marie & Nick, Hamidreza M., 2022. "Feasibility of hydrogen storage in depleted hydrocarbon chalk reservoirs: Assessment of biochemical and chemical effects," Applied Energy, Elsevier, vol. 323(C).
    12. Seitz, Gabriele & Helmig, Rainer & Class, Holger, 2020. "A numerical modeling study on the influence of porosity changes during thermochemical heat storage," Applied Energy, Elsevier, vol. 259(C).
    13. Jahanbakhsh, Amir & Louis Potapov-Crighton, Alexander & Mosallanezhad, Abdolali & Tohidi Kaloorazi, Nina & Maroto-Valer, M. Mercedes, 2024. "Underground hydrogen storage: A UK perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Song, Hongqing & Lao, Junming & Zhang, Liyuan & Xie, Chiyu & Wang, Yuhe, 2023. "Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency," Applied Energy, Elsevier, vol. 337(C).
    15. Aramendia, Emmanuel & Brockway, Paul E. & Taylor, Peter G. & Norman, Jonathan B., 2024. "Exploring the effects of mineral depletion on renewable energy technologies net energy returns," Energy, Elsevier, vol. 290(C).
    16. Xie, Weidong & Wang, Hua & Vandeginste, Veerle & Chen, Si & Gan, Huajun & Wang, Meng & Yu, Zhenghong, 2023. "Thermodynamic and kinetic affinity of CO2 relative to CH4 and their pressure, temperature and pore structure sensitivity in the competitive adsorption system in shale gas reservoirs," Energy, Elsevier, vol. 277(C).
    17. Cui, Ruikang & Sun, Jianmeng & Liu, Haitao & Dong, Huaimin & Yan, WeiChao, 2024. "Pore structure and gas adsorption characteristics in stress-loaded shale on molecular simulation," Energy, Elsevier, vol. 286(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Zanfu & Du, Qingjun & Hou, Jian & Liu, Ruixin & Liu, Yongge & Zheng, Haoyu & Zhou, Kang & Zhang, Yang, 2025. "Numerical simulation of cyclic hydrogen storage in depleted gas reservoirs: considering microbial growth and hydrogen consumption," Energy, Elsevier, vol. 328(C).
    2. Davoodi, Shadfar & Al-Shargabi, Mohammed & Wood, David A. & Longe, Promise O. & Mehrad, Mohammad & Rukavishnikov, Valeriy S., 2025. "Underground hydrogen storage: A review of technological developments, challenges, and opportunities," Applied Energy, Elsevier, vol. 381(C).
    3. Ji, Zhenxing & Liu, Jianfeng & Cai, Yougang & Yang, Jianxiong & Yi, Haiyang & Jiang, Liangliang & Wei, Jinbing & Hassanpouryouzband, Aliakbar, 2025. "Technical characteristics and developmental prospect of hydrogen storage in salt cavern: A perspective of layered salt rocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    4. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    5. Zhu, Shijie & Shi, Xilin & Yang, Chunhe & Li, Yinping & Li, Hang & Yang, Kun & Wei, Xinxing & Bai, Weizheng & Liu, Xin, 2023. "Hydrogen loss of salt cavern hydrogen storage," Renewable Energy, Elsevier, vol. 218(C).
    6. Jahanbakhsh, Amir & Louis Potapov-Crighton, Alexander & Mosallanezhad, Abdolali & Tohidi Kaloorazi, Nina & Maroto-Valer, M. Mercedes, 2024. "Underground hydrogen storage: A UK perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Tarkowski, Radosław & Lankof, Leszek & Luboń, Katarzyna & Michalski, Jan, 2024. "Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland," Applied Energy, Elsevier, vol. 355(C).
    8. Song, Rui & Wu, Mingyang & Liu, Jianjun & Yang, Chunhe, 2024. "Pore scale modeling on microbial hydrogen consumption and mass transfer of multicomponent gas flow in underground hydrogen storage of depleted reservoir," Energy, Elsevier, vol. 306(C).
    9. Bi, Zhenhui & Guo, Yintong & Yang, Chunhe & Yang, Hanzhi & Wang, Lei & He, Yuting & Guo, Wuhao, 2025. "Numerical investigation of fluid dynamics in aquifers for seasonal large-scale hydrogen storage using compositional simulations," Renewable Energy, Elsevier, vol. 239(C).
    10. Yang, Jingze & Fu, Binbin & Peng, Jiaqi & Wang, Guibin & Yao, Hong, 2025. "Integration of a salt cavern for large-scale hydrogen storage into a solar-wind-storage power system: Technical and economic advantages," Applied Energy, Elsevier, vol. 393(C).
    11. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    12. Deng, Peng & Chen, Zhangxin & Peng, Xiaolong & Zhu, Suyang & Liu, Benjieming & Lei, Xuantong & Di, Chaojie, 2025. "Converting underground natural gas storage for hydrogen: A review of advantages, challenges and economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    13. Jahanbani Veshareh, Moein & Thaysen, Eike Marie & Nick, Hamidreza M., 2022. "Feasibility of hydrogen storage in depleted hydrocarbon chalk reservoirs: Assessment of biochemical and chemical effects," Applied Energy, Elsevier, vol. 323(C).
    14. Chai, Maojie & Chen, Zhangxin & Nourozieh, Hossein & Yang, Min, 2023. "Numerical simulation of large-scale seasonal hydrogen storage in an anticline aquifer: A case study capturing hydrogen interactions and cushion gas injection," Applied Energy, Elsevier, vol. 334(C).
    15. Hibbard, Leon & White, Joshua A. & Clarke, David G. & Harrison, Simon & Schultz, Richard A. & Hasiuk, Franek & Goodman, Angela & Huerta, Nicolas, 2025. "Underground hydrogen storage resource assessment for the Cook Inlet, Alaska," Applied Energy, Elsevier, vol. 377(PB).
    16. Wang, Qing & Zhang, Mengchuan & Zhou, Fujian & Fei, Hongtao & Yu, Sen & Su, Hang & Liang, Tianbo & Chen, Zhangxin, 2024. "Experiment and prediction of enhanced gas storage capacity in depleted gas reservoirs for clean energy applications," Renewable Energy, Elsevier, vol. 237(PC).
    17. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    18. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.
    19. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    20. Li, Huan & Ye, Liangliang & Yang, Jie & Shi, Jinming & Ma, Hongling & Wang, Jiarong & Shi, Xilin & Yang, Chunhe, 2025. "Comprehensive evaluation of green hydrogen storage in an ultra-deep horizontal salt cavern," Renewable Energy, Elsevier, vol. 247(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:326:y:2025:i:c:s0360544225018687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.