IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v393y2025ics0306261925008037.html

Integration of a salt cavern for large-scale hydrogen storage into a solar-wind-storage power system: Technical and economic advantages

Author

Listed:
  • Yang, Jingze
  • Fu, Binbin
  • Peng, Jiaqi
  • Wang, Guibin
  • Yao, Hong

Abstract

The problem of cross-seasonal mismatch between power supply and demand is becoming increasingly prominent in high proportion renewable energy generation systems. Relying solely on mature energy storage technologies, such as electrochemical and thermal energy storage, cannot address this challenge. In this paper, salt cavern is utilized for large-scale hydrogen storage, and complements battery and thermal energy storage to achieve multi-time scale power regulation of solar-wind power systems. The optimal combination and capacity parameters of the system are obtained through multi-objective optimization of levelized cost of energy (LCOE), loss of power supply probability (LPSP), and curtailed power amount, and the comprehensive performance is compared with the system without hydrogen devices and the system with hydrogen tanks. Results show that when the power supply reliability is extremely high, the integration of low-cost and large-scale salt cavern hydrogen storage can significantly reduce the installed capacities of power generation and energy storage devices, thereby reducing LCOE and improving power consumption ability. When the annual power demand is fully met, the LCOE of the proposed system is $0.244 /kWh, which is $0.216 /kWh lower than the system with hydrogen tanks, demonstrating a huge economic advantage. While compared to the system without hydrogen devices, the LCOE can be reduced by $0.055/kWh. More importantly, the annual curtailed power can be reduced by 76% under tri-objective optimization. Although salt cavern hydrogen storage technology has advantages in certain power supply scenarios, accelerating the reduction of unit investment costs for electrolyzer and fuel cell is particularly important.

Suggested Citation

  • Yang, Jingze & Fu, Binbin & Peng, Jiaqi & Wang, Guibin & Yao, Hong, 2025. "Integration of a salt cavern for large-scale hydrogen storage into a solar-wind-storage power system: Technical and economic advantages," Applied Energy, Elsevier, vol. 393(C).
  • Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008037
    DOI: 10.1016/j.apenergy.2025.126073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925008037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Yue & Zhou, Suyang & Wang, Jihua & Chou, Jun & Fang, Yunhui & Pan, Guangsheng & Gu, Wei, 2020. "Feasibility analysis of utilising underground hydrogen storage facilities in integrated energy system: Case studies in China," Applied Energy, Elsevier, vol. 269(C).
    2. Zhang, Ning & Yu, Yanghao & Wu, Jiawei & Du, Ershun & Zhang, Shuming & Xiao, Jinyu, 2024. "Optimal configuration of concentrating solar power generation in power system with high share of renewable energy resources," Renewable Energy, Elsevier, vol. 220(C).
    3. Hughes, J.P. & Clipsham, J. & Chavushoglu, H. & Rowley-Neale, S.J. & Banks, C.E., 2021. "Polymer electrolyte electrolysis: A review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Tarkowski, Radoslaw, 2019. "Underground hydrogen storage: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 86-94.
    5. Kondziella, Hendrik & Specht, Karl & Lerch, Philipp & Scheller, Fabian & Bruckner, Thomas, 2023. "The techno-economic potential of large-scale hydrogen storage in Germany for a climate-neutral energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    6. Yang, Jingze & Yu, Zitao & Yao, Hong, 2023. "Efficient turbomachinery layout design and performance comparison of supercritical CO2 cycles for high-temperature concentrated solar power plants under peak-shaving scenarios," Energy, Elsevier, vol. 285(C).
    7. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2021. "Load matching and techno-economic analysis of CSP plant with S–CO2 Brayton cycle in CSP-PV-wind hybrid system," Energy, Elsevier, vol. 223(C).
    8. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    9. Li, Rong & Guo, Su & Yang, Yong & Liu, Deyou, 2020. "Optimal sizing of wind/ concentrated solar plant/ electric heater hybrid renewable energy system based on two-stage stochastic programming," Energy, Elsevier, vol. 209(C).
    10. Chadly, Assia & Azar, Elie & Maalouf, Maher & Mayyas, Ahmad, 2022. "Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings," Energy, Elsevier, vol. 247(C).
    11. Xiao, Tingyu & Liu, Chao & Wang, Xurong & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin & Li, Xiaoxiao, 2022. "Life cycle assessment of the solar thermal power plant integrated with air-cooled supercritical CO2 Brayton cycle," Renewable Energy, Elsevier, vol. 182(C), pages 119-133.
    12. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    13. Pan, Guangsheng & Gu, Wei & Qiu, Haifeng & Lu, Yuping & Zhou, Suyang & Wu, Zhi, 2020. "Bi-level mixed-integer planning for electricity-hydrogen integrated energy system considering levelized cost of hydrogen," Applied Energy, Elsevier, vol. 270(C).
    14. Li, Jidong & Chen, Shijun & Wu, Yuqiang & Wang, Qinhui & Liu, Xing & Qi, Lijian & Lu, Xiuyuan & Gao, Lu, 2021. "How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Starke, Allan R. & Cardemil, José M. & Escobar, Rodrigo & Colle, Sergio, 2018. "Multi-objective optimization of hybrid CSP+PV system using genetic algorithm," Energy, Elsevier, vol. 147(C), pages 490-503.
    16. Liu, Xin & Shi, Xilin & Li, Yinping & Li, Peng & Zhao, Kai & Ma, Hongling & Yang, Chunhe, 2021. "Maximum gas production rate for salt cavern gas storages," Energy, Elsevier, vol. 234(C).
    17. Boretti, Alberto & Castelletto, Stefania, 2024. "Hydrogen energy storage requirements for solar and wind energy production to account for long-term variability," Renewable Energy, Elsevier, vol. 221(C).
    18. Gawlick, Julia & Hamacher, Thomas, 2023. "Impact of coupling the electricity and hydrogen sector in a zero-emission European energy system in 2050," Energy Policy, Elsevier, vol. 180(C).
    19. Lue Xiong & Mutasim Nour, 2019. "Techno-Economic Analysis of a Residential PV-Storage Model in a Distribution Network," Energies, MDPI, vol. 12(16), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zhoulei & Yang, Jingze & Li, Aijun & Deng, Qian & Yao, Hong, 2025. "Life cycle greenhouse gas emission assessment of solar power tower plant based on supercritical CO2 cycle operating at peak-shaving scenarios," Energy, Elsevier, vol. 332(C).
    2. Yang, Jingze & Chi, Hetian & Cheng, Mohan & Dong, Mingqi & Li, Siwu & Yao, Hong, 2023. "Performance analysis of hydrogen supply using curtailed power from a solar-wind-storage power system," Renewable Energy, Elsevier, vol. 212(C), pages 1005-1019.
    3. He, Zhoulei & Yang, Jingze & Cheng, Mohan & Li, Jian & Yao, Hong, 2025. "Study on off-design performance of supercritical CO2 cycles coupled with single-tank thermal energy storage under variable heat source temperatures and partial loads," Energy, Elsevier, vol. 317(C).
    4. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    5. Davoodi, Shadfar & Al-Shargabi, Mohammed & Wood, David A. & Longe, Promise O. & Mehrad, Mohammad & Rukavishnikov, Valeriy S., 2025. "Underground hydrogen storage: A review of technological developments, challenges, and opportunities," Applied Energy, Elsevier, vol. 381(C).
    6. Xiong, Zanfu & Hou, Jian & Du, Qingjun & Chen, Zheng & Lu, Xiangquan & Liu, Yongge & Wei, Bei & Lu, Teng, 2025. "A comprehensive review of H2 physical behavior and H2-rock-microbial interactions in underground hydrogen storage," Energy, Elsevier, vol. 326(C).
    7. Zhu, Shijie & Shi, Xilin & Yang, Chunhe & Li, Yinping & Li, Hang & Yang, Kun & Wei, Xinxing & Bai, Weizheng & Liu, Xin, 2023. "Hydrogen loss of salt cavern hydrogen storage," Renewable Energy, Elsevier, vol. 218(C).
    8. Song, Rui & Wu, Mingyang & Liu, Jianjun & Yang, Chunhe, 2024. "Pore scale modeling on microbial hydrogen consumption and mass transfer of multicomponent gas flow in underground hydrogen storage of depleted reservoir," Energy, Elsevier, vol. 306(C).
    9. Tarkowski, Radosław & Lankof, Leszek & Luboń, Katarzyna & Michalski, Jan, 2024. "Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland," Applied Energy, Elsevier, vol. 355(C).
    10. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.
    11. Bi, Zhenhui & Guo, Yintong & Yang, Chunhe & Yang, Hanzhi & Wang, Lei & He, Yuting & Guo, Wuhao, 2025. "Numerical investigation of fluid dynamics in aquifers for seasonal large-scale hydrogen storage using compositional simulations," Renewable Energy, Elsevier, vol. 239(C).
    12. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    13. Li, Huan & Ye, Liangliang & Yang, Jie & Shi, Jinming & Ma, Hongling & Wang, Jiarong & Shi, Xilin & Yang, Chunhe, 2025. "Comprehensive evaluation of green hydrogen storage in an ultra-deep horizontal salt cavern," Renewable Energy, Elsevier, vol. 247(C).
    14. Yuan, Chen & Yu, Xinran & Li, Peijin & Shan, Xijie & Hong, Weimin & Li, Yuxing & Chen, Zhangxing & Liu, Cuiwei & Wu, Keliu, 2025. "From micro to macro: A comprehensive review for underground hydrogen storage technologies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 224(C).
    15. Yang, Dongfeng & Zhan, Tong & Liu, Xiaojun & Jiang, Chao & Huang, Gang & Wang, Hui, 2025. "Scenario information gap planning for electricity-gas-hydrogen integrated energy systems considering the impact of grid interaction locations," Energy, Elsevier, vol. 335(C).
    16. Shuai, Wei & Wang, Keqin & Zhang, Tian & He, Yibin & Xu, Haoran & Zhu, Peiwang & Xiao, Gang, 2025. "Multi-objective optimization of operational strategy and capacity configuration for hybrid energy system combined with concentrated solar power plant," Applied Energy, Elsevier, vol. 390(C).
    17. Wang, Tongtao & Ding, Zhekang & Xie, Kai & Wang, Wenquan & He, Tao & Xie, Dongzhou & Liao, Youqiang & Ren, Zhongxin & Zhu, Kuoyuan, 2025. "Study of injection and production cycle scheme of horizontal salt cavern when used for hydrogen energy storage," Renewable Energy, Elsevier, vol. 248(C).
    18. Al-Quraan, A. & Al-Mhairat, B., 2024. "Economic predictive control-based sizing and energy management for grid-connected hybrid renewable energy systems," Energy, Elsevier, vol. 302(C).
    19. Huang, Si & Liu, Kai & Li, Yinping & Shi, Xilin & Fan, Hao & Xu, Mingnan & Jiang, Zirui & Hu, Feiyang & Ma, Hongling & Li, Peng, 2025. "Electrolyte-rock interactions in salt cavern flow batteries," Energy, Elsevier, vol. 330(C).
    20. Huang, Yashuai & Shi, Xilin & Zhu, Shijie & Wang, Xuan & Bai, Weizheng & Zhao, Shuo & Xu, Mingnan & Li, Peng & Li, Yinping & Yang, Chunhe, 2025. "Study on the thermodynamic response of salt cavern hydrogen storage under long-term thermo-mechanical coupling," Energy, Elsevier, vol. 334(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925008037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.