IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2848-d1101394.html
   My bibliography  Save this article

Biodiesel Production Catalyzed by Lipase Extract Powder of Leonotis nepetifolia (Christmas Candlestick) Seed

Author

Listed:
  • Verónica Ávila Vázquez

    (Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico)

  • Miguel Mauricio Aguilera Flores

    (Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico)

  • Luis Felipe Hernández Casas

    (Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico)

  • Nahum Andrés Medellín Castillo

    (Graduate Studies and Research Center, Faculty of Engineering, Autonomous University of San Luis Potosi, Av. Manuel Nava No. 8, Col. Zona Universitaria Poniente, San Luis Potosí 78290, Mexico)

  • Alejandro Rocha Uribe

    (Graduate Studies and Research Center, Faculty of Chemical, Autonomous University of San Luis Potosi, Av. Manuel Nava No. 6, Col. Zona Universitaria Poniente, San Luis Potosí 78210, Mexico)

  • Hans Christian Correa Aguado

    (Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico)

Abstract

This work aimed to evaluate the ability of lipase extract powder obtained from Leonotis nepetifolia seed for enzyme-catalyzed biodiesel production using Leonotis nepetifolia oil, commercial olive oil, and waste cooking oil as substrates. The lipase extract powder showed an enzymatic activity and hydrolysis percentage of 24.7 U/g and 21.31%, respectively, using commercial olive oil as a reference. Transesterification reaction conditions were 40 g of substrate, 34 °C, molar ratio oil: methanol of 1:3, lipase extract powder 20 wt%, phosphates buffer (pH 4.8) 20 wt%, and a reaction time of 8 h. Transesterification yields of 74.5%, 71.5%, and 69.3% for commercial olive oil, waste cooking oil, and Leonotis nepetifolia oil were obtained, respectively. Biodiesel physicochemical parameters were analyzed and compared with the international standards: EN 14214 (European Union) and ASTM D6751 (American Society for Testing and Materials). The biodiesel’s moisture and volatile matter percentages, iodine index, cooper strip corrosion, and methyl esters content conformed to the standards’ specifications. The fatty acid methyl ester content of the vegetable oils showed the presence of methyl oleate after enzyme-catalyzed transesterification. This study reveals that biodiesel production catalyzed by lipase extract powder from Leonotis nepetifolia could be a viable alternative, showing that transesterification yields competitive results.

Suggested Citation

  • Verónica Ávila Vázquez & Miguel Mauricio Aguilera Flores & Luis Felipe Hernández Casas & Nahum Andrés Medellín Castillo & Alejandro Rocha Uribe & Hans Christian Correa Aguado, 2023. "Biodiesel Production Catalyzed by Lipase Extract Powder of Leonotis nepetifolia (Christmas Candlestick) Seed," Energies, MDPI, vol. 16(6), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2848-:d:1101394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2848/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2848/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dias, J.M. & Araújo, J.M. & Costa, J.F. & Alvim-Ferraz, M.C.M. & Almeida, M.F., 2013. "Biodiesel production from raw castor oil," Energy, Elsevier, vol. 53(C), pages 58-66.
    2. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    3. Pooja, S. & Anbarasan, B. & Ponnusami, V. & Arumugam, A., 2021. "Efficient production and optimization of biodiesel from kapok (Ceiba pentandra) oil by lipase transesterification process: Addressing positive environmental impact," Renewable Energy, Elsevier, vol. 165(P1), pages 619-631.
    4. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    5. Ko, Chun-Han & Yeh, Kai-Wun & Wang, Ya-Nang & Wu, Chien-Hou & Chang, Fang-Chih & Cheng, Ming-Hsun & Liou, Chia-Shin, 2012. "Impact of methanol addition strategy on enzymatic transesterification of jatropha oil for biodiesel processing," Energy, Elsevier, vol. 48(1), pages 375-379.
    6. Binhayeeding, Narisa & Klomklao, Sappasith & Prasertsan, Poonsuk & Sangkharak, Kanokphorn, 2020. "Improvement of biodiesel production using waste cooking oil and applying single and mixed immobilised lipases on polyhydroxyalkanoate," Renewable Energy, Elsevier, vol. 162(C), pages 1819-1827.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juliana Gisele Corrêa Rodrigues & Fernanda Veras Cardoso & Celine Campos dos Santos & Rosiane Rodrigues Matias & Nélio Teixeira Machado & Sergio Duvoisin Junior & Patrícia Melchionna Albuquerque, 2023. "Biocatalyzed Transesterification of Waste Cooking Oil for Biodiesel Production Using Lipase from the Amazonian Fungus Endomelanconiopsis endophytica," Energies, MDPI, vol. 16(19), pages 1-19, October.
    2. Kavitha Munisamy Sambasivam & Praveen Kuppan & Lafiya Shanavas Laila & Viswanaathan Shashirekha & Krishnamurthi Tamilarasan & Sudharsanam Abinandan, 2023. "Kernel-Based Biodiesel Production from Non-Edible Oil Seeds: Techniques, Optimization, and Environmental Implications," Energies, MDPI, vol. 16(22), pages 1-34, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Đurišić-Mladenović, Nataša & Kiss, Ferenc & Škrbić, Biljana & Tomić, Milan & Mićić, Radoslav & Predojević, Zlatica, 2018. "Current state of the biodiesel production and the indigenous feedstock potential in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 280-291.
    2. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    3. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    4. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    5. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    6. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    7. Rozina, & Asif, Saira & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nsir, 2017. "Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 687-702.
    8. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    9. Carlos S. Osorio-González & Natali Gómez-Falcon & Fabiola Sandoval-Salas & Rahul Saini & Satinder K. Brar & Antonio Avalos Ramírez, 2020. "Production of Biodiesel from Castor Oil: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    10. Blin, J. & Brunschwig, C. & Chapuis, A. & Changotade, O. & Sidibe, S.S. & Noumi, E.S. & Girard, P., 2013. "Characteristics of vegetable oils for use as fuel in stationary diesel engines—Towards specifications for a standard in West Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 580-597.
    11. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    12. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.
    13. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    14. Aga, Wondwosen S. & Fantaye, Solomon K. & Jabasingh, S. Anuradha, 2020. "Biodiesel production from Ethiopian ‘Besana’- Croton macrostachyus seed: Characterization and optimization," Renewable Energy, Elsevier, vol. 157(C), pages 574-584.
    15. Yang, Liuqing & Takase, Mohammed & Zhang, Min & Zhao, Ting & Wu, Xiangyang, 2014. "Potential non-edible oil feedstock for biodiesel production in Africa: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 461-477.
    16. Sudalai, S & Rupesh, K J & Devanesan, M.G & Arumugam, A, 2023. "A critical review of Madhuca indica as an efficient biodiesel producer: Towards sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    18. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Chong, W.T. & Boosroh, M.H., 2013. "Overview properties of biodiesel diesel blends from edible and non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 346-360.
    19. Moosavi, Seyed Amir & Aghaalikhani, Majid & Ghobadian, Barat & Fayyazi, Ebrahim, 2018. "Okra: A potential future bioenergy crop in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 517-524.
    20. Ramalingam, Senthil & Rajendran, Silambarasan & Ganesan, Pranesh & Govindasamy, Mohan, 2018. "Effect of operating parameters and antioxidant additives with biodiesels to improve the performance and reducing the emissions in a compression ignition engine – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 775-788.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2848-:d:1101394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.