IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v165y2021ip1p619-631.html
   My bibliography  Save this article

Efficient production and optimization of biodiesel from kapok (Ceiba pentandra) oil by lipase transesterification process: Addressing positive environmental impact

Author

Listed:
  • Pooja, S.
  • Anbarasan, B.
  • Ponnusami, V.
  • Arumugam, A.

Abstract

Ceiba pentandra, non-edible oil (acid value of 21 mg KOH/g estimated using ASTM D664 methodology) is employed as a source for producing biodiesel using lipase immobilized on mesoporous material as a catalyst. Optimum conditions for maximum yield (96.4%) were the temperature of 33 °C, methanol to oil molar ratio of about 13.3:1 with a water content of 14.5%. From the reusability studies, it can be observed that greater than 85% conversion could be obtained up to 10 cycles, thereby proving the significant efficacy of the catalyst. Density, flash point, cloud point, calorific value, and cetane number of the produced biodiesels were 885 kg/m3, 152 °C, −3 °C, 38.44 kJ/kg and 57.2, respectively meeting the ASTM standards specified for biodiesel. The performance and emissions characteristics of 20% biodiesel (CIB20) and petroleum diesel were studied in a VCR under varying speeds in a full load condition. Blended biofuel showed a 13% lower mean brake power (BP) and 25% higher mean specific fuel consumption (SFC) compared to diesel fuel. Though NOx emission of the blended diesel was 31% higher than that of petroleum diesel, Hydrocarbon, CO2, and CO emissions were 8.4%, 13.7%, and 5.08% lower than that of diesel fuel, respectively.

Suggested Citation

  • Pooja, S. & Anbarasan, B. & Ponnusami, V. & Arumugam, A., 2021. "Efficient production and optimization of biodiesel from kapok (Ceiba pentandra) oil by lipase transesterification process: Addressing positive environmental impact," Renewable Energy, Elsevier, vol. 165(P1), pages 619-631.
  • Handle: RePEc:eee:renene:v:165:y:2021:i:p1:p:619-631
    DOI: 10.1016/j.renene.2020.11.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120317961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Betiku, Eriola & Akintunde, Aramide Mistura & Ojumu, Tunde Victor, 2016. "Banana peels as a biobase catalyst for fatty acid methyl esters production using Napoleon's plume (Bauhinia monandra) seed oil: A process parameters optimization study," Energy, Elsevier, vol. 103(C), pages 797-806.
    2. Arumugam, A. & Ponnusami, V., 2014. "Biodiesel production from Calophyllum inophyllum oil using lipase producing Rhizopus oryzae cells immobilized within reticulated foams," Renewable Energy, Elsevier, vol. 64(C), pages 276-282.
    3. Senthil Kumar, T. & Senthil Kumar, P. & Annamalai, K., 2015. "Experimental study on the performance and emission measures of direct injection diesel engine with Kapok methyl ester and its blends," Renewable Energy, Elsevier, vol. 74(C), pages 903-909.
    4. Mohammad Fauzi, Ahmad Hafiidz & Amin, Nor Aishah Saidina & Mat, Ramli, 2014. "Esterification of oleic acid to biodiesel using magnetic ionic liquid: Multi-objective optimization and kinetic study," Applied Energy, Elsevier, vol. 114(C), pages 809-818.
    5. Kusumo, F. & Silitonga, A.S. & Masjuki, H.H. & Ong, Hwai Chyuan & Siswantoro, J. & Mahlia, T.M.I., 2017. "Optimization of transesterification process for Ceiba pentandra oil: A comparative study between kernel-based extreme learning machine and artificial neural networks," Energy, Elsevier, vol. 134(C), pages 24-34.
    6. Ong, Hwai Chyuan & Masjuki, H.H. & Mahlia, T.M.I. & Silitonga, A.S. & Chong, W.T. & Yusaf, Talal, 2014. "Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine," Energy, Elsevier, vol. 69(C), pages 427-445.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wancura, João H.C. & Brondani, Michel & dos Santos, Maicon S.N. & Oro, Carolina E.D. & Wancura, Guilherme C. & Tres, Marcus V. & Oliveira, J. Vladimir, 2023. "Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances," Renewable Energy, Elsevier, vol. 216(C).
    2. Verónica Ávila Vázquez & Miguel Mauricio Aguilera Flores & Luis Felipe Hernández Casas & Nahum Andrés Medellín Castillo & Alejandro Rocha Uribe & Hans Christian Correa Aguado, 2023. "Biodiesel Production Catalyzed by Lipase Extract Powder of Leonotis nepetifolia (Christmas Candlestick) Seed," Energies, MDPI, vol. 16(6), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olatundun, Esther Adedayo & Borokini, Omowumi Oluwatumininu & Betiku, Eriola, 2020. "Cocoa pod husk-plantain peel blend as a novel green heterogeneous catalyst for renewable and sustainable honne oil biodiesel synthesis: A case of biowastes-to-wealth," Renewable Energy, Elsevier, vol. 166(C), pages 163-175.
    2. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Fitranto Kusumo & T.M.I. Mahlia & A.H. Shamsuddin & Hwai Chyuan Ong & A.R Ahmad & Z. Ismail & Z.C. Ong & A.S. Silitonga, 2019. "The Effect of Multi-Walled Carbon Nanotubes-Additive in Physicochemical Property of Rice Brand Methyl Ester: Optimization Analysis," Energies, MDPI, vol. 12(17), pages 1-19, August.
    4. Arumugam, A. & Ponnusami, V., 2019. "Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview," Renewable Energy, Elsevier, vol. 131(C), pages 459-471.
    5. Kumar, Sunil & Jain, Siddharth & Kumar, Harmesh, 2021. "Application of adaptive neuro-fuzzy inference system and response surface methodology in biodiesel synthesis from jatropha–algae oil and its performance and emission analysis on diesel engine coupled ," Energy, Elsevier, vol. 226(C).
    6. Nazia Hossain & Alyaa Nabihah Razali & Teuku Meurah Indra Mahlia & Tamal Chowdhury & Hemal Chowdhury & Hwai Chyuan Ong & Abd Halim Shamsuddin & Arridina Susan Silitonga, 2019. "Experimental Investigation, Techno-Economic Analysis and Environmental Impact of Bioethanol Production from Banana Stem," Energies, MDPI, vol. 12(20), pages 1-16, October.
    7. Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
    8. M. Mofijur & M.M. Hasan & T.M.I. Mahlia & S.M. Ashrafur Rahman & A.S. Silitonga & Hwai Chyuan Ong, 2019. "Performance and Emission Parameters of Homogeneous Charge Compression Ignition (HCCI) Engine: A Review," Energies, MDPI, vol. 12(18), pages 1-21, September.
    9. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    10. Suwin Sandu & Muyi Yang & Teuku Meurah Indra Mahlia & Wongkot Wongsapai & Hwai Chyuan Ong & Nandy Putra & S. M. Ashrafur Rahman, 2019. "Energy-Related CO 2 Emissions Growth in ASEAN Countries: Trends, Drivers and Policy Implications," Energies, MDPI, vol. 12(24), pages 1-15, December.
    11. Vigneshwar, V. & Krishnan, S. Yogesh & Kishna, R. Susanth & Srinath, R. & Ashok, B. & Nanthagopal, K., 2019. "Comprehensive review of Calophyllum inophyllum as a feasible alternate energy for CI engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    13. M. Mofijur & F. Kusumo & I. M. Rizwanul Fattah & H. M. Mahmudul & M. G. Rasul & A. H. Shamsuddin & T. M. I. Mahlia, 2020. "Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production," Energies, MDPI, vol. 13(7), pages 1-15, April.
    14. Jing Han Siow & Muhammad Roil Bilad & Wahyu Caesarendra & Jia Jia Leam & Mohammad Azmi Bustam & Nonni Soraya Sambudi & Yusuf Wibisono & Teuku Meurah Indra Mahlia, 2021. "Progress in Development of Nanostructured Manganese Oxide as Catalyst for Oxygen Reduction and Evolution Reaction," Energies, MDPI, vol. 14(19), pages 1-16, October.
    15. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    16. Hamed Pourzolfaghar & Faisal Abnisa & Wan Mohd Ashri Wan Daud & Mohamed Kheireddine Aroua & Teuku Meurah Indra Mahlia, 2020. "Catalyst Characteristics and Performance of Silica-Supported Zinc for Hydrodeoxygenation of Phenol," Energies, MDPI, vol. 13(11), pages 1-13, June.
    17. Gavaskar, T. & Ramanan M, Venkata & Arun, K. & Arivazhagan, S., 2023. "The combined effect of green synthesized nitrogen-doped carbon quantum dots blended jackfruit seed biodiesel and acetylene gas tested on the dual fuel engine," Energy, Elsevier, vol. 275(C).
    18. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    19. Rinaldi Idroes & Muhammad Yusuf & Saiful Saiful & Muksin Alatas & Subhan Subhan & Andi Lala & Muslem Muslem & Rivansyah Suhendra & Ghazi Mauer Idroes & Marwan Marwan & Teuku Meurah Indra Mahlia, 2019. "Geochemistry Exploration and Geothermometry Application in the North Zone of Seulawah Agam, Aceh Besar District, Indonesia," Energies, MDPI, vol. 12(23), pages 1-17, November.
    20. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:165:y:2021:i:p1:p:619-631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.