IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2467-d357890.html
   My bibliography  Save this article

Production of Biodiesel from Castor Oil: A Review

Author

Listed:
  • Carlos S. Osorio-González

    (Department of Civil Engineering, Lassonde School of Engineering, York University, North York, TO M3J 1P3, Canada
    First authors contributed equally.)

  • Natali Gómez-Falcon

    (Department of Biotechnology, Scientific Research Center of Yucatan, Mérida 97205, Mexico
    First authors contributed equally.)

  • Fabiola Sandoval-Salas

    (Subdirection of Research and Postgraduate Studies, Tecnológico Nacional de México/ITS Perote, Perote 91270, Mexico)

  • Rahul Saini

    (Department of Civil Engineering, Lassonde School of Engineering, York University, North York, TO M3J 1P3, Canada)

  • Satinder K. Brar

    (Department of Civil Engineering, Lassonde School of Engineering, York University, North York, TO M3J 1P3, Canada)

  • Antonio Avalos Ramírez

    (Centre national en électrochimie et en technologies environnementales, Shawinigan, QC G9N 6V8, Canada)

Abstract

An attractive alternative to the use of fossil fuels is biodiesel, which can be obtained from a variety of feedstock through different transesterification systems such as ultrasound, microwave, biological, chemical, among others. The efficient and cost-effective biodiesel production depends on several parameters such as free fatty acid content in the feedstock, transesterification reaction efficiency, alcohol:oil ratio, catalysts type, and several parameters during the production process. However, biodiesel production from vegetable oils is under development, causing the final price of biodiesel to be higher than diesel derived from petroleum. An alternative to decrease the production costs will be the use of economical feedstocks and simple production processes. Castor oil is an excellent raw material in terms of price and quality, but especially this non-edible vegetable oil does not have any issues or compromise food security. Recently, the use of castor oil has attracted attention for producing and optimizing biodiesel production, due to high content of ricinoleic fatty acid and the possibility to esterify with only methanol, which assures low production costs. Additionally, biodiesel from castor oil has different advantages over conventional diesel. Some of them are biodegradable, non-toxic, renewable, they can be used alone, low greenhouse gas emission, among others. This review discusses and analyzes different transesterification processes, technologies, as well as different technical aspects during biodiesel production using castor oil as a feedstock.

Suggested Citation

  • Carlos S. Osorio-González & Natali Gómez-Falcon & Fabiola Sandoval-Salas & Rahul Saini & Satinder K. Brar & Antonio Avalos Ramírez, 2020. "Production of Biodiesel from Castor Oil: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2467-:d:357890
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2467/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2467/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    2. Aboelazayem, Omar & El-Gendy, Nour Sh. & Abdel-Rehim, Ahmed A. & Ashour, Fatma & Sadek, Mohamed A., 2018. "Biodiesel production from castor oil in Egypt: Process optimisation, kinetic study, diesel engine performance and exhaust emissions analysis," Energy, Elsevier, vol. 157(C), pages 843-852.
    3. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    4. Rial, Rafael Cardoso & de Freitas, Osmar Nunes & Nazário, Carlos Eduardo Domingues & Viana, Luíz Henrique, 2020. "Biodiesel from soybean oil using Porcine pancreas lipase immobilized on a new support: p-nitrobenzyl cellulose xanthate," Renewable Energy, Elsevier, vol. 149(C), pages 970-979.
    5. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2014. "Transesterification of crude Jatropha oil by activated carbon-supported heteropolyacid catalyst in an ultrasound-assisted reactor system," Renewable Energy, Elsevier, vol. 62(C), pages 10-17.
    6. Dias, J.M. & Araújo, J.M. & Costa, J.F. & Alvim-Ferraz, M.C.M. & Almeida, M.F., 2013. "Biodiesel production from raw castor oil," Energy, Elsevier, vol. 53(C), pages 58-66.
    7. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    8. Angeles Cancela & Rocio Maceiras & Santiago Urrejola & Angel Sanchez, 2012. "Microwave-Assisted Transesterification of Macroalgae," Energies, MDPI, vol. 5(4), pages 1-10, March.
    9. Kumar, Dilip & Das, Tapas & Giri, Balendu Shekher & Verma, Bhawna, 2020. "Preparation and characterization of novel hybrid bio-support material immobilized from Pseudomonas cepacia lipase and its application to enhance biodiesel production," Renewable Energy, Elsevier, vol. 147(P1), pages 11-24.
    10. Nayak, Sheetal N. & Bhasin, Chandra Prakash & Nayak, Milap G., 2019. "A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems," Renewable Energy, Elsevier, vol. 143(C), pages 1366-1387.
    11. Issariyakul, Titipong & Dalai, Ajay K., 2014. "Biodiesel from vegetable oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 446-471.
    12. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    13. Tesfa, B. & Mishra, R. & Gu, F. & Powles, N., 2010. "Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines," Renewable Energy, Elsevier, vol. 35(12), pages 2752-2760.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seber, Gonca & Escobar, Neus & Valin, Hugo & Malina, Robert, 2022. "Uncertainty in life cycle greenhouse gas emissions of sustainable aviation fuels from vegetable oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    2. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    3. Diego Luna & Rafael Estevez, 2022. "Optimization of Biodiesel and Biofuel Process," Energies, MDPI, vol. 15(16), pages 1-4, August.
    4. Haq, Muteeb ul & Jafry, Ali Turab & Ahmad, Saad & Cheema, Taqi Ahmad & Kamran, Muhammad & Ajab, Huma & Masjuki, Haji Hassan, 2023. "Macroscopic spray behavior in pressurized chamber alongside thermal performance of quaternary castor biodiesel with butanol and 1-butoxybutane," Energy, Elsevier, vol. 282(C).
    5. Saad Ahmad & Ali Turab Jafry & Muteeb ul Haq & Naseem Abbas & Huma Ajab & Arif Hussain & Uzair Sajjad, 2023. "Performance and Emission Characteristics of Second-Generation Biodiesel with Oxygenated Additives," Energies, MDPI, vol. 16(13), pages 1-33, July.
    6. Anderson Breno Souza & Alvaro Antonio Villa Ochoa & José Ângelo Peixoto da Costa & Gustavo de Novaes Pires Leite & Héber Claudius Nunes Silva & Andrezza Carolina Carneiro Tómas & David Campos Barbosa , 2023. "A Review of Tropical Organic Materials for Biodiesel as a Substitute Energy Source in Internal Combustion Engines: A Viable Solution?," Energies, MDPI, vol. 16(9), pages 1-25, April.
    7. Ngoka Chizoma Adaku & Leo C. Osuji & Aduabobo. I. Hart, 2022. "Lethal Effects Of Aqueous Methanol On Juvenile Tropical Freshwater Fish (Oreochromis niloticus)," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 9(10), pages 09-14, October.
    8. Abdulelah Aljaafari & I. M. R. Fattah & M. I. Jahirul & Yuantong Gu & T. M. I. Mahlia & Md. Ariful Islam & Mohammad S. Islam, 2022. "Biodiesel Emissions: A State-of-the-Art Review on Health and Environmental Impacts," Energies, MDPI, vol. 15(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
    2. Varun, & Singh, Paramvir & Tiwari, Samaresh Kumar & Singh, Rituparn & Kumar, Naresh, 2017. "Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1016-1033.
    3. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Kumar, Dilip & Das, Tapas & Giri, Balendu Shekher & Verma, Bhawna, 2020. "Preparation and characterization of novel hybrid bio-support material immobilized from Pseudomonas cepacia lipase and its application to enhance biodiesel production," Renewable Energy, Elsevier, vol. 147(P1), pages 11-24.
    5. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    6. Bisi Olaniyan & Basudeb Saha, 2020. "Multiobjective Optimization for the Greener Synthesis of Chloromethyl Ethylene Carbonate by CO 2 and Epichlorohydrin via Response Surface Methodology," Energies, MDPI, vol. 13(3), pages 1-27, February.
    7. Verma, Puneet & Sharma, M.P. & Dwivedi, Gaurav, 2016. "Impact of alcohol on biodiesel production and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 319-333.
    8. Verónica Ávila Vázquez & Miguel Mauricio Aguilera Flores & Luis Felipe Hernández Casas & Nahum Andrés Medellín Castillo & Alejandro Rocha Uribe & Hans Christian Correa Aguado, 2023. "Biodiesel Production Catalyzed by Lipase Extract Powder of Leonotis nepetifolia (Christmas Candlestick) Seed," Energies, MDPI, vol. 16(6), pages 1-13, March.
    9. Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
    10. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.
    11. Arridina Susan Silitonga & Teuku Meurah Indra Mahlia & Abd Halim Shamsuddin & Hwai Chyuan Ong & Jassinnee Milano & Fitranto Kusumo & Abdi Hanra Sebayang & Surya Dharma & Husin Ibrahim & Hazlina Husin , 2019. "Optimization of Cerbera manghas Biodiesel Production Using Artificial Neural Networks Integrated with Ant Colony Optimization," Energies, MDPI, vol. 12(20), pages 1-21, October.
    12. Mujtaba, M.A. & Masjuki, H.H. & Kalam, M.A. & Ong, Hwai Chyuan & Gul, M. & Farooq, M. & Soudagar, Manzoore Elahi M. & Ahmed, Waqar & Harith, M.H. & Yusoff, M.N.A.M., 2020. "Ultrasound-assisted process optimization and tribological characteristics of biodiesel from palm-sesame oil via response surface methodology and extreme learning machine - Cuckoo search," Renewable Energy, Elsevier, vol. 158(C), pages 202-214.
    13. Singh, Paramvir & Varun, & Chauhan, S.R. & Kumar, Niraj, 2016. "A review on methodology for complete elimination of diesel from CI engines using mixed feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1110-1125.
    14. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    15. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    16. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    17. Zhu, Qing-li & Gu, Heng & Ke, Zengguang, 2018. "Congeneration biodiesel, ricinine and nontoxic meal from castor seed," Renewable Energy, Elsevier, vol. 120(C), pages 51-59.
    18. Thangarasu, Vinoth & Balaji, B. & Ramanathan, Anand, 2019. "Experimental investigation of tribo-corrosion and engine characteristics of Aegle Marmelos Correa biodiesel and its diesel blends on direct injection diesel engine," Energy, Elsevier, vol. 171(C), pages 879-892.
    19. Đurišić-Mladenović, Nataša & Kiss, Ferenc & Škrbić, Biljana & Tomić, Milan & Mićić, Radoslav & Predojević, Zlatica, 2018. "Current state of the biodiesel production and the indigenous feedstock potential in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 280-291.
    20. Saad Ahmad & Ali Turab Jafry & Muteeb ul Haq & Naseem Abbas & Huma Ajab & Arif Hussain & Uzair Sajjad, 2023. "Performance and Emission Characteristics of Second-Generation Biodiesel with Oxygenated Additives," Energies, MDPI, vol. 16(13), pages 1-33, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2467-:d:357890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.