IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2358-d1084662.html
   My bibliography  Save this article

Low-Cost Communication Interface between a Smart Meter and a Smart Inverter

Author

Listed:
  • Christopher E. Piggott

    (Rochester Institute of Technology, Rochester, NY 14623, USA
    These authors contributed equally to this work.)

  • Zachary Caruso

    (Avangrid, Rochester, NY 14606, USA
    These authors contributed equally to this work.)

  • Nenad G. Nenadic

    (Rochester Institute of Technology, Rochester, NY 14623, USA
    These authors contributed equally to this work.)

Abstract

The need for a low-cost interface between the grid and small (<250 kW) renewable distributed energy resources (DERs) is growing in importance as the number of small DERs continues to grow. In this study, a system architecture was proposed to investigate paths to an affordable interconnection for small renewable DERs.Then, a low-cost communication interface between a smart meter and smart inverter was installed using a commercially available bridge device. The interface device was selected based on an assessment concluding that it would be able to support the emerging advanced metering infrastructure (AMI) network. Next, messages were passed across the experimental end-to-end communication interface to test their speed and reliability. Success was based on whether the key functions defined in the standard IEEE 2030.5 were executed or not, which include set points, disconnect/reconnect, and Volt-VAr optimization. The results of the testing provided detailed insights into the benefits and limitations of the proposed architecture. Intermittency of weather-dependent DERs (e.g., solar and wind) adversely impacts the power quality of a DER, making hourly day-ahead prediction nearly impossible. With this in mind, the investigation also considered the potential of using smart inverter functions to reduce DER’s intermittency.

Suggested Citation

  • Christopher E. Piggott & Zachary Caruso & Nenad G. Nenadic, 2023. "Low-Cost Communication Interface between a Smart Meter and a Smart Inverter," Energies, MDPI, vol. 16(5), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2358-:d:1084662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2358/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2358/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sovacool, Benjamin K., 2009. "The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse?," Utilities Policy, Elsevier, vol. 17(3-4), pages 288-296, September.
    2. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    3. Daniel Suchet & Adrien Jeantet & Thomas Elghozi & Zacharie Jehl, 2020. "Defining and Quantifying Intermittency in the Power Sector," Energies, MDPI, vol. 13(13), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    2. Ma, Yixiang & Yu, Lean & Zhang, Guoxing, 2022. "Short-term wind power forecasting with an intermittency-trait-driven methodology," Renewable Energy, Elsevier, vol. 198(C), pages 872-883.
    3. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    4. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.
    6. Lewis, Matt & McNaughton, James & Márquez-Dominguez, Concha & Todeschini, Grazia & Togneri, Michael & Masters, Ian & Allmark, Matthew & Stallard, Tim & Neill, Simon & Goward-Brown, Alice & Robins, Pet, 2019. "Power variability of tidal-stream energy and implications for electricity supply," Energy, Elsevier, vol. 183(C), pages 1061-1074.
    7. Woo, C.K. & Zarnikau, J. & Moore, J. & Horowitz, I., 2011. "Wind generation and zonal-market price divergence: Evidence from Texas," Energy Policy, Elsevier, vol. 39(7), pages 3928-3938, July.
    8. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    9. Busiswe Skosana & Mukwanga W. Siti & Nsilulu T. Mbungu & Sonu Kumar & Willy Mulumba, 2023. "An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review," Energies, MDPI, vol. 16(22), pages 1-27, November.
    10. Zafirakis, D. & Chalvatzis, K. & Kaldellis, J.K., 2013. "“Socially just” support mechanisms for the promotion of renewable energy sources in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 478-493.
    11. Don Fullerton & Chi L. Ta, 2022. "What Determines Effectiveness of Renewable Energy Standards? General Equilibrium Analytical Model and Empirical Analysis," CESifo Working Paper Series 9565, CESifo.
    12. Vagliasindi, Maria, 2012. "The role of policy driven incentives to attract PPPs in renewable-based energy in developing countries : a cross-country analysis," Policy Research Working Paper Series 6120, The World Bank.
    13. Byuk-Keun Jo & Gilsoo Jang, 2019. "An Evaluation of the Effect on the Expansion of Photovoltaic Power Generation According to Renewable Energy Certificates on Energy Storage Systems: A Case Study of the Korean Renewable Energy Market," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    14. Squalli, Jay, 2017. "Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data," Energy, Elsevier, vol. 127(C), pages 479-488.
    15. Cifor, Angela & Denholm, Paul & Ela, Erik & Hodge, Bri-Mathias & Reed, Adam, 2015. "The policy and institutional challenges of grid integration of renewable energy in the western United States," Utilities Policy, Elsevier, vol. 33(C), pages 34-41.
    16. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    17. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2018. "Impact of government subsidies on economic feasibility of offshore wind system: Implications for Taiwan energy policies," Applied Energy, Elsevier, vol. 217(C), pages 336-345.
    18. Gosens, Jorrit, 2017. "Natural resource endowment is not a strong driver of wind or PV development," Renewable Energy, Elsevier, vol. 113(C), pages 1007-1018.
    19. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    20. Álvarez-García, Francisco J. & Fresno-Schmolk, Gonzalo & OrtizBevia, María J. & Cabos, William & RuizdeElvira, Antonio, 2020. "Reduction of aggregate wind power variability using Empirical Orthogonal Teleconnections: An application in the Iberian Peninsula," Renewable Energy, Elsevier, vol. 159(C), pages 151-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2358-:d:1084662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.