IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2105-d1076024.html
   My bibliography  Save this article

The Impact of Sewage Sludge-Sweet Sorghum Blends on the Biogas Production for Energy Purposes

Author

Listed:
  • Hubert Prask

    (Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland)

  • Małgorzata Fugol

    (Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland)

  • Arkadiusz Dyjakon

    (Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland)

  • Liliana Głąb

    (Institute of Agroecology and Plant Production, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland)

  • Józef Sowiński

    (Institute of Agroecology and Plant Production, Wroclaw University of Environmental and Life Sciences, 50-375 Wrocław, Poland)

  • Alena Whitaker

    (Biological Systems Engineering and Global Resource Systems, Iowa State University, Ames, IA 50011, USA)

Abstract

The paper presents research on the impact of adding various forms of sorghum to sewage sludge on the anaerobic digestion process. The use of liquid sewage sludge alone in biogas plants at wastewater treatment plants is inefficient due to the low total solid (dry matter) content of this substrate. The tests revealed that the production of methane in biogas is low and amounted to 17.9% (105.4 Nm 3 ∙Mg −1 , VS—volatile solid). Therefore, other substrates should be blended with sewage sludge to increase the total solid of the batch. Sorghum silage, sorghum pomace, and sorghum juice were added to the sewage sludge in various proportions during the research. As a result, the improvement of the biogas process, the stabilization of the biogas production curve, as well as the increase in methane yield were observed. The most biogas and methane were obtained from a mixture of sorghum juice (5%) and sewage sludge (664.8 Nm 3 ∙Mg −1 VS and 53.9%, respectively). Biogas production from other substrates based on sorghum and sewage sludge ranged from 457.4 to 588.8 Nm 3 ∙Mg −1 VS. For a mixture of juice (7%) and sewage sludge, the batch was acidified, and biogas production was only 281.5 Nm 3 ∙Mg −1 VS. Studies have shown that intelligent blending of an alternative raw material (compared to traditional maize silage) with sewage sludge allows for similar biogas yields while maintaining a stable anaerobic digestion process.

Suggested Citation

  • Hubert Prask & Małgorzata Fugol & Arkadiusz Dyjakon & Liliana Głąb & Józef Sowiński & Alena Whitaker, 2023. "The Impact of Sewage Sludge-Sweet Sorghum Blends on the Biogas Production for Energy Purposes," Energies, MDPI, vol. 16(5), pages 1-11, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2105-:d:1076024
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2105/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yazdani, Mohammad & Ebrahimi-Nik, Mohammadali & Heidari, Ava & Abbaspour-Fard, Mohammad Hossein, 2019. "Improvement of biogas production from slaughterhouse wastewater using biosynthesized iron nanoparticles from water treatment sludge," Renewable Energy, Elsevier, vol. 135(C), pages 496-501.
    2. Katarzyna Anna Koryś & Agnieszka Ewa Latawiec & Katarzyna Grotkiewicz & Maciej Kuboń, 2019. "The Review of Biomass Potential for Agricultural Biogas Production in Poland," Sustainability, MDPI, vol. 11(22), pages 1-13, November.
    3. Rolz, Carlos & de León, Robert & Mendizábal de Montenegro, Ana Luisa & Porras, Vilma & Cifuentes, Rolando, 2017. "A multiple harvest cultivation strategy for ethanol production from sweet sorghum throughout the year in tropical ecosystems," Renewable Energy, Elsevier, vol. 106(C), pages 103-110.
    4. Murphy, J.D. & Power, N., 2009. "Technical and economic analysis of biogas production in Ireland utilising three different crop rotations," Applied Energy, Elsevier, vol. 86(1), pages 25-36, January.
    5. Dinko Đurđević & Paolo Blecich & Željko Jurić, 2019. "Energy Recovery from Sewage Sludge: The Case Study of Croatia," Energies, MDPI, vol. 12(10), pages 1-19, May.
    6. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    7. Kamil Witaszek & Krzysztof Pilarski & Gniewko Niedbała & Agnieszka Anna Pilarska & Marcin Herkowiak, 2020. "Energy Efficiency of Comminution and Extrusion of Maize Substrates Subjected to Methane Fermentation," Energies, MDPI, vol. 13(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Félix González & Carmen María Álvez-Medina & Sergio Nogales-Delgado, 2023. "Biogas Steam Reforming in Wastewater Treatment Plants: Opportunities and Challenges," Energies, MDPI, vol. 16(17), pages 1-35, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wojciech Czekała & Tomasz Jasiński & Mieczysław Grzelak & Kamil Witaszek & Jacek Dach, 2022. "Biogas Plant Operation: Digestate as the Valuable Product," Energies, MDPI, vol. 15(21), pages 1-11, November.
    2. Maciej Dzikuć & Joanna Wyrobek & Łukasz Popławski, 2021. "Economic Determinants of Low-Carbon Development in the Visegrad Group Countries," Energies, MDPI, vol. 14(13), pages 1-12, June.
    3. Que Nguyen Ho & Giridhar Babu Anam & Jaein Kim & Somin Park & Tae-U Lee & Jae-Young Jeon & Yun-Young Choi & Young-Ho Ahn & Byung Joon Lee, 2022. "Fate of Sulfate in Municipal Wastewater Treatment Plants and Its Effect on Sludge Recycling as a Fuel Source," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    4. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    5. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    6. Morin, Philippe & Marcos, Bernard & Moresoli, Christine & Laflamme, Claude B., 2010. "Economic and environmental assessment on the energetic valorization of organic material for a municipality in Quebec, Canada," Applied Energy, Elsevier, vol. 87(1), pages 275-283, January.
    7. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    8. Giuseppe Campo & Alberto Cerutti & Claudio Lastella & Aldo Leo & Deborah Panepinto & Mariachiara Zanetti & Barbara Ruffino, 2021. "Production and Destination of Sewage Sludge in the Piemonte Region (Italy): The Results of a Survey for a Future Sustainable Management," IJERPH, MDPI, vol. 18(7), pages 1-13, March.
    9. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    10. Thamsiriroj, Thanasit & Murphy, Jerry D., 2011. "A critical review of the applicability of biodiesel and grass biomethane as biofuels to satisfy both biofuel targets and sustainability criteria," Applied Energy, Elsevier, vol. 88(4), pages 1008-1019, April.
    11. Kamil Witaszek & Marcin Herkowiak & Agnieszka A. Pilarska & Wojciech Czekała, 2022. "Methods of Handling the Cup Plant ( Silphium perfoliatum L.) for Energy Production," Energies, MDPI, vol. 15(5), pages 1-20, March.
    12. Jakub Mazurkiewicz, 2022. "The Biogas Potential of Oxytree Leaves," Energies, MDPI, vol. 15(23), pages 1-16, November.
    13. Aguilar-Moreno, Guadalupe Stefanny & Navarro-Cerón, Elizabeth & Velázquez-Hernández, Azucena & Hernández-Eugenio, Guadalupe & Aguilar-Méndez, Miguel Ángel & Espinosa-Solares, Teodoro, 2020. "Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles," Renewable Energy, Elsevier, vol. 147(P1), pages 204-213.
    14. Marzena Smol, 2023. "Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery," Energies, MDPI, vol. 16(9), pages 1-18, May.
    15. Jakub Mazurkiewicz, 2023. "Loss of Energy and Economic Potential of a Biogas Plant Fed with Cow Manure due to Storage Time," Energies, MDPI, vol. 16(18), pages 1-22, September.
    16. Auburger, Sebastian & Jacobs, Anna & Märländer, Bernward & Bahrs, Enno, 2016. "Economic optimization of feedstock mix for energy production with biogas technology in Germany with a special focus on sugar beets – Effects on greenhouse gas emissions and energy balances," Renewable Energy, Elsevier, vol. 89(C), pages 1-11.
    17. Yang, Jin & Chen, Bin, 2014. "Emergy analysis of a biogas-linked agricultural system in rural China – A case study in Gongcheng Yao Autonomous County," Applied Energy, Elsevier, vol. 118(C), pages 173-182.
    18. Sakiewicz, P. & Piotrowski, K. & Ober, J. & Karwot, J., 2020. "Innovative artificial neural network approach for integrated biogas – wastewater treatment system modelling: Effect of plant operating parameters on process intensification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    19. Abdallah, Muhammed S. & Mansour, Mohy S. & Allam, Nageh K., 2021. "Mapping the stability of free-jet biogas flames under partially premixed combustion," Energy, Elsevier, vol. 220(C).
    20. Dinko Đurđević & Saša Žiković & Paolo Blecich, 2022. "Sustainable Sewage Sludge Management Technologies Selection Based on Techno-Economic-Environmental Criteria: Case Study of Croatia," Energies, MDPI, vol. 15(11), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2105-:d:1076024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.