IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p311-d1014328.html
   My bibliography  Save this article

Fate of Sulfate in Municipal Wastewater Treatment Plants and Its Effect on Sludge Recycling as a Fuel Source

Author

Listed:
  • Que Nguyen Ho

    (Energy Environment Institute, Kyungpook National University, Sangju 37224, Republic of Korea
    Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

  • Giridhar Babu Anam

    (Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea)

  • Jaein Kim

    (Energy Environment Institute, Kyungpook National University, Sangju 37224, Republic of Korea)

  • Somin Park

    (Department of Disaster Prevention and Environmental Engineering, Kyungpook National University, Sangju 37224, Republic of Korea)

  • Tae-U Lee

    (Daegu Public Facilities Corporation, Daegu 42479, Republic of Korea)

  • Jae-Young Jeon

    (Daegu Public Facilities Corporation, Daegu 42479, Republic of Korea)

  • Yun-Young Choi

    (Department of Disaster Prevention and Environmental Engineering, Kyungpook National University, Sangju 37224, Republic of Korea)

  • Young-Ho Ahn

    (Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea)

  • Byung Joon Lee

    (Energy Environment Institute, Kyungpook National University, Sangju 37224, Republic of Korea
    Department of Advanced Science and Technology Convergence, Kyungpook National University, Sangju 37224, Republic of Korea)

Abstract

Wastewater sludge is used as an alternative fuel due to its high organic content and calorific value. However, influent characteristics and operational practices of wastewater treatment plants (WWTPs) can increase the sulfur content of sludge, devaluing it as a fuel. Thus, we investigated the biochemical mechanisms that elevate the sulfur content of sludge in a full-scale industrial WWTP receiving wastewater of the textile dyeing industry and a domestic WWTP by monitoring the sulfate, sulfur, and iron contents and the biochemical transformation of sulfate to sulfur in the wastewater and sludge treatment streams. A batch sulfate reduction rate test and microbial 16S rRNA and dsrB gene sequencing analyses were applied to assess the potential and activity of sulfate-reducing bacteria and their effect on sulfur deposition. This study indicated that the primary clarifier and anaerobic digester prominently reduced sulfate concentration through biochemical sulfate reduction and iron–sulfur complexation under anaerobic conditions, from 1247 mg/L in the influent to 6.2~59.8 mg/L in the industrial WWTP and from 46.7 mg/L to 0~0.8 mg/L in the domestic WWTPs. The anaerobic sludge, adapted in the high sulfate concentration of the industrial WWTP, exhibited a two times higher specific sulfate reduction rate (0.13 mg SO 4 2− /gVSS/h) and sulfur content (3.14% DS) than the domestic WWTP sludge. Gene sequencing analysis of the population structure of common microbes and sulfate-reducing bacteria indicated the diversity of microorganisms involved in biochemical sulfate reduction in the sulfur cycle, supporting the data revealed by chemical analysis and batch tests.

Suggested Citation

  • Que Nguyen Ho & Giridhar Babu Anam & Jaein Kim & Somin Park & Tae-U Lee & Jae-Young Jeon & Yun-Young Choi & Young-Ho Ahn & Byung Joon Lee, 2022. "Fate of Sulfate in Municipal Wastewater Treatment Plants and Its Effect on Sludge Recycling as a Fuel Source," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:311-:d:1014328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/311/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/311/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dinko Đurđević & Paolo Blecich & Željko Jurić, 2019. "Energy Recovery from Sewage Sludge: The Case Study of Croatia," Energies, MDPI, vol. 12(10), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Campo & Alberto Cerutti & Claudio Lastella & Aldo Leo & Deborah Panepinto & Mariachiara Zanetti & Barbara Ruffino, 2021. "Production and Destination of Sewage Sludge in the Piemonte Region (Italy): The Results of a Survey for a Future Sustainable Management," IJERPH, MDPI, vol. 18(7), pages 1-13, March.
    2. Marzena Smol, 2023. "Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery," Energies, MDPI, vol. 16(9), pages 1-18, May.
    3. Norbert Miskolczi & Szabina Tomasek, 2022. "Investigation of Pyrolysis Behavior of Sewage Sludge by Thermogravimetric Analysis Coupled with Fourier Transform Infrared Spectrometry Using Different Heating Rates," Energies, MDPI, vol. 15(14), pages 1-18, July.
    4. Liu, Hanqiao & Qiao, Haoyu & Liu, Shiqi & Wei, Guoxia & Zhao, Hailong & Li, Kai & Weng, Fangkai, 2023. "Energy, environment and economy assessment of sewage sludge incineration technologies in China," Energy, Elsevier, vol. 264(C).
    5. Dinko Đurđević & Saša Žiković & Paolo Blecich, 2022. "Sustainable Sewage Sludge Management Technologies Selection Based on Techno-Economic-Environmental Criteria: Case Study of Croatia," Energies, MDPI, vol. 15(11), pages 1-23, May.
    6. Jankowski, Krzysztof Józef & Kołodziej, Barbara & Dubis, Bogdan & Sugier, Danuta & Antonkiewicz, Jacek & Szatkowski, Artur, 2023. "The effect of sewage sludge on the energy balance of cup plant biomass production. A six-year field experiment in Poland," Energy, Elsevier, vol. 276(C).
    7. Oumaima Mabrouk & Helmi Hamdi & Sami Sayadi & Mohammad A. Al-Ghouti & Mohammed H. Abu-Dieyeh & Nabil Zouari, 2023. "Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    8. Gulnar Sugurbekova & Elvira Nagyzbekkyzy & Ainur Sarsenova & Gaziza Danlybayeva & Sandugash Anuarbekova & Rabiga Kudaibergenova & Céline Frochot & Samir Acherar & Yerlan Zhatkanbayev & Nazira Moldagul, 2023. "Sewage Sludge Management and Application in the Form of Sustainable Fertilizer," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
    9. González-Núñez, Sofía & Guerras, Lidia S. & Martín, Mariano, 2023. "A multiscale analysis approach for the valorization of sludge and MSW via co-incineration," Energy, Elsevier, vol. 263(PE).
    10. Ewa Siedlecka & Jarosław Siedlecki, 2021. "Influence of Valorization of Sewage Sludge on Energy Consumption in the Drying Process," Energies, MDPI, vol. 14(15), pages 1-19, July.
    11. Jongkeun Lee & Oh Kyung Choi & Dooyoung Oh & Kawnyong Lee & Ki Young Park & Daegi Kim, 2020. "Stimulation of Lipid Extraction Efficiency from Sewage Sludge for Biodiesel Production through Hydrothermal Pretreatment," Energies, MDPI, vol. 13(23), pages 1-10, December.
    12. Štefan Bojnec & Alan Križaj, 2021. "Electricity Markets during the Liberalization: The Case of a European Union Country," Energies, MDPI, vol. 14(14), pages 1-21, July.
    13. Nicola Di Costanzo & Alessandra Cesaro & Francesco Di Capua & Giovanni Esposito, 2021. "Exploiting the Nutrient Potential of Anaerobically Digested Sewage Sludge: A Review," Energies, MDPI, vol. 14(23), pages 1-25, December.
    14. Hubert Prask & Małgorzata Fugol & Arkadiusz Dyjakon & Liliana Głąb & Józef Sowiński & Alena Whitaker, 2023. "The Impact of Sewage Sludge-Sweet Sorghum Blends on the Biogas Production for Energy Purposes," Energies, MDPI, vol. 16(5), pages 1-11, February.
    15. Li Ma & Li Sha & Xingxin Liu & Shuting Zhang, 2021. "Study of Molding and Drying Characteristics of Compressed Municipal Sludge-Corn Stalk Fuel Pellets," Energies, MDPI, vol. 14(11), pages 1-15, May.
    16. Adam Masłoń & Joanna Czarnota & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2020. "The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland," Energies, MDPI, vol. 13(22), pages 1-21, November.
    17. Bezirgiannidis, Athanasios & Chatzopoulos, Paraschos & Tsakali, Aikaterini & Ntougias, Spyridon & Melidis, Paraschos, 2020. "Renewable energy recovery from sewage sludge derived from chemically enhanced precipitation," Renewable Energy, Elsevier, vol. 162(C), pages 1811-1818.
    18. Juan Jesús De la Torre Bayo & Montserrat Zamorano Toro & Luz Marina Ruiz & Juan Carlos Torres Rojo & Jaime Martín Pascual, 2023. "Analysing the Sustainability of the Production of Solid Recovered Fuel from Screening Waste," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    19. Mariusz Tańczuk & Wojciech Kostowski, 2021. "Technical, Energetic and Economic Optimization Analysis of Selection of Heat Source for Municipal Sewage Sludge Dryer," Energies, MDPI, vol. 14(2), pages 1-16, January.
    20. Tobias Zimmer & Andreas Rudi & Simon Glöser-Chahoud & Frank Schultmann, 2022. "Techno-Economic Analysis of Intermediate Pyrolysis with Solar Drying: A Chilean Case Study," Energies, MDPI, vol. 15(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:311-:d:1014328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.