IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p6112-d1113663.html
   My bibliography  Save this article

Sewage Sludge Management and Application in the Form of Sustainable Fertilizer

Author

Listed:
  • Gulnar Sugurbekova

    (LLP «Ecostandart.kz», 23-17 Street, Astana 010000, Kazakhstan
    Department of Chemistry, L. N. Gumilyov Eurasian National University, 2 Satpaev Street, Astana 010000, Kazakhstan)

  • Elvira Nagyzbekkyzy

    (LLP «Ecostandart.kz», 23-17 Street, Astana 010000, Kazakhstan)

  • Ainur Sarsenova

    (LLP «National Production Center for Ecological and Industrial Biotechnology», 27 Bokeikhan Street, Astana 010000, Kazakhstan)

  • Gaziza Danlybayeva

    (LLP «National Production Center for Ecological and Industrial Biotechnology», 27 Bokeikhan Street, Astana 010000, Kazakhstan)

  • Sandugash Anuarbekova

    (LLP «Ecostandart.kz», 23-17 Street, Astana 010000, Kazakhstan)

  • Rabiga Kudaibergenova

    (Department of Chemistry and Chemical Technology, Faculty of Technology, Taraz Regional University Named after M.Kh. Dulati, 60 Tole Bi Street, Taraz 080000, Kazakhstan)

  • Céline Frochot

    (Reactions and Chemical Engineering Laboratory (LRGP), UMR7274, Université de Lorraine-French National Scientific Research Center (CNRS), 54000 Nancy, France)

  • Samir Acherar

    (Laboratory of Chemical Physics of Macromolecules (LCPM), UMR7375, Université de Lorraine-CNRS, 54000 Nancy, France)

  • Yerlan Zhatkanbayev

    (LLP «Ecostandart.kz», 23-17 Street, Astana 010000, Kazakhstan)

  • Nazira Moldagulova

    (LLP «Ecostandart.kz», 23-17 Street, Astana 010000, Kazakhstan)

Abstract

One of the most pressing environmental problems worldwide is sewage sludge (SS) management. Every year, wastewater volume increases and thus, the amount of SS produced increases as well. The disposal of SS in landfills, as practiced in many countries, is not a sustainable solution. Instead, SS, rich in organic matter and other nutrients, can be used as an alternative soil additive or fertilizer. The properties of these materials depend on their chemical composition and the method of treatment. Experience from a number of countries, such as the US and Europe, has shown that SS can be transformed from a waste into a valuable resource, provided that the final product fulfils the relevant regulatory standards. This review examines the sustainable conversion of SS to sustainable fertilizers, the impact on waste minimization, and the potential benefits in agriculture.

Suggested Citation

  • Gulnar Sugurbekova & Elvira Nagyzbekkyzy & Ainur Sarsenova & Gaziza Danlybayeva & Sandugash Anuarbekova & Rabiga Kudaibergenova & Céline Frochot & Samir Acherar & Yerlan Zhatkanbayev & Nazira Moldagul, 2023. "Sewage Sludge Management and Application in the Form of Sustainable Fertilizer," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6112-:d:1113663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/6112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/6112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ewa Neczaj & Anna Grosser & Anna Grobelak & Piotr Celary & Bal Ram Singh, 2021. "Conversion of Sewage Sludge and Other Biodegradable Waste into High-Value Soil Amendment within a Circular Bioeconomy Perspective," Energies, MDPI, vol. 14(21), pages 1-17, October.
    2. Konstantia-Ekaterini Lasaridi & Thrassyvoulos Manios & Stamatis Stamatiadis & Christina Chroni & Adamantini Kyriacou, 2018. "The Evaluation of Hazards to Man and the Environment during the Composting of Sewage Sludge," Sustainability, MDPI, vol. 10(8), pages 1-13, July.
    3. Dinko Đurđević & Paolo Blecich & Željko Jurić, 2019. "Energy Recovery from Sewage Sludge: The Case Study of Croatia," Energies, MDPI, vol. 12(10), pages 1-19, May.
    4. Izabela Bartkowska & Paweł Biedka & Izabela Anna Tałałaj, 2020. "Production of Biosolids by Autothermal Thermophilic Aerobic Digestion (ATAD) from a Municipal Sewage Sludge: The Polish Case Study," Energies, MDPI, vol. 13(23), pages 1-14, November.
    5. Aisha Al-Rumaihi & Gordon McKay & Hamish R. Mackey & Tareq Al-Ansari, 2020. "Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewa Neczaj & Anna Grosser & Anna Grobelak & Piotr Celary & Bal Ram Singh, 2021. "Conversion of Sewage Sludge and Other Biodegradable Waste into High-Value Soil Amendment within a Circular Bioeconomy Perspective," Energies, MDPI, vol. 14(21), pages 1-17, October.
    2. Mohammad Ghorbani & Petr Konvalina & Anna Walkiewicz & Reinhard W. Neugschwandtner & Marek Kopecký & Kazem Zamanian & Wei-Hsin Chen & Daniel Bucur, 2022. "Feasibility of Biochar Derived from Sewage Sludge to Promote Sustainable Agriculture and Mitigate GHG Emissions—A Review," IJERPH, MDPI, vol. 19(19), pages 1-23, October.
    3. Que Nguyen Ho & Giridhar Babu Anam & Jaein Kim & Somin Park & Tae-U Lee & Jae-Young Jeon & Yun-Young Choi & Young-Ho Ahn & Byung Joon Lee, 2022. "Fate of Sulfate in Municipal Wastewater Treatment Plants and Its Effect on Sludge Recycling as a Fuel Source," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    4. Giovanni Biancini & Barbara Marchetti & Luca Cioccolanti & Matteo Moglie, 2022. "Comprehensive Life Cycle Assessment Analysis of an Italian Composting Facility concerning Environmental Footprint Minimization and Renewable Energy Integration," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    5. Angeliki Maragkaki & Christos Gamvroudis & Christina Lountou & Pothitos Stamatiadis & Ioannis Sampathianakis & Akrivi Papadaki & Thrassyvoulos Manios, 2022. "Autonomous Home Composting Units for Urban Areas in Greece: The Case Study of the Municipality of Rhodes," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    6. Giuseppe Campo & Alberto Cerutti & Claudio Lastella & Aldo Leo & Deborah Panepinto & Mariachiara Zanetti & Barbara Ruffino, 2021. "Production and Destination of Sewage Sludge in the Piemonte Region (Italy): The Results of a Survey for a Future Sustainable Management," IJERPH, MDPI, vol. 18(7), pages 1-13, March.
    7. Sabah Mariyam & Logan Cochrane & Shifa Zuhara & Gordon McKay, 2022. "Waste Management in Qatar: A Systematic Literature Review and Recommendations for System Strengthening," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    8. Marzena Smol, 2023. "Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery," Energies, MDPI, vol. 16(9), pages 1-18, May.
    9. Norbert Miskolczi & Szabina Tomasek, 2022. "Investigation of Pyrolysis Behavior of Sewage Sludge by Thermogravimetric Analysis Coupled with Fourier Transform Infrared Spectrometry Using Different Heating Rates," Energies, MDPI, vol. 15(14), pages 1-18, July.
    10. Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Liu, Hanqiao & Qiao, Haoyu & Liu, Shiqi & Wei, Guoxia & Zhao, Hailong & Li, Kai & Weng, Fangkai, 2023. "Energy, environment and economy assessment of sewage sludge incineration technologies in China," Energy, Elsevier, vol. 264(C).
    12. Dinko Đurđević & Saša Žiković & Paolo Blecich, 2022. "Sustainable Sewage Sludge Management Technologies Selection Based on Techno-Economic-Environmental Criteria: Case Study of Croatia," Energies, MDPI, vol. 15(11), pages 1-23, May.
    13. Giuliana Vinci & Roberto Ruggieri & Andrea Billi & Carmine Pagnozzi & Maria Vittoria Di Loreto & Marco Ruggeri, 2021. "Sustainable Management of Organic Waste and Recycling for Bioplastics: A LCA Approach for the Italian Case Study," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    14. Piotr Sołowiej & Patrycja Pochwatka & Agnieszka Wawrzyniak & Krzysztof Łapiński & Andrzej Lewicki & Jacek Dach, 2021. "The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process," Energies, MDPI, vol. 14(4), pages 1-14, February.
    15. Jankowski, Krzysztof Józef & Kołodziej, Barbara & Dubis, Bogdan & Sugier, Danuta & Antonkiewicz, Jacek & Szatkowski, Artur, 2023. "The effect of sewage sludge on the energy balance of cup plant biomass production. A six-year field experiment in Poland," Energy, Elsevier, vol. 276(C).
    16. Laís Fabiana Serafini & Manuel Feliciano & Manuel Angelo Rodrigues & Artur Gonçalves, 2023. "Systematic Review and Meta-Analysis on the Use of LCA to Assess the Environmental Impacts of the Composting Process," Sustainability, MDPI, vol. 15(2), pages 1-33, January.
    17. Oumaima Mabrouk & Helmi Hamdi & Sami Sayadi & Mohammad A. Al-Ghouti & Mohammed H. Abu-Dieyeh & Nabil Zouari, 2023. "Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    18. González-Núñez, Sofía & Guerras, Lidia S. & Martín, Mariano, 2023. "A multiscale analysis approach for the valorization of sludge and MSW via co-incineration," Energy, Elsevier, vol. 263(PE).
    19. Hai Wang, 2023. "Comparative Study of a Fixed-Focus Fresnel Lens Solar Concentrator/Conical Cavity Receiver System with and without Glass Cover Installed in a Solar Cooker," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    20. Ewa Siedlecka & Jarosław Siedlecki, 2021. "Influence of Valorization of Sewage Sludge on Energy Consumption in the Drying Process," Energies, MDPI, vol. 14(15), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6112-:d:1113663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.