Author
Listed:
- Pietro Romano
(Department of Industrial and Information Engineering and of Economics (DIIIE), Engineering Headquarters of Roio, University of L’Aquila, 67100 L’Aquila, Italy)
- Adriana Zuffranieri
(Department of Industrial and Information Engineering and of Economics (DIIIE), Engineering Headquarters of Roio, University of L’Aquila, 67100 L’Aquila, Italy)
- Gabriele Di Giacomo
(Independent Researcher, 64025 Pineto, Italy)
Abstract
Municipal sewage sludge, a by-product of urban wastewater treatment, is increasingly recognized to be a strategic resource rather than a disposal burden. Traditional management practices, such as landfilling, incineration, and land application, are facing growing limitations due to environmental risks, regulatory pressures, and the underuse of the sludge’s energy and nutrient potential. This review examines the evolution of sludge management, focusing on technologies that enable energy recovery and resource valorization. The transition from linear treatment systems toward integrated biorefineries is underway, combining biological, thermal, and chemical processes. Anaerobic digestion remains the most widely used energy-positive method, but it is significantly improved by processes such as thermal hydrolysis, hydrothermal carbonization, and wet oxidation. Among these, hydrothermal carbonization stands out for its scalability, energy efficiency, and phosphorus-rich hydrochar production, although implementation barriers remain. Economic feasibility is highly context-dependent, being shaped by capital costs, energy prices, product markets, and policy incentives. This review identifies key gaps, including the need for standardized treatment models, decentralized processing hubs, and safe residual management. Supportive regulation and economic instruments will be essential to facilitate widespread adoption. In conclusion, sustainable sludge management depends on modular, integrated systems that recover energy and nutrients while meeting environmental standards. A coordinated approach across technology, policy, and economics is vital to unlock the full value of this critical waste stream.
Suggested Citation
Pietro Romano & Adriana Zuffranieri & Gabriele Di Giacomo, 2025.
"Energy Valorization and Resource Recovery from Municipal Sewage Sludge: Evolution, Recent Advances, and Future Prospects,"
Energies, MDPI, vol. 18(13), pages 1-32, June.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:13:p:3442-:d:1691437
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3442-:d:1691437. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.