IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1897-d764562.html
   My bibliography  Save this article

Methods of Handling the Cup Plant ( Silphium perfoliatum L.) for Energy Production

Author

Listed:
  • Kamil Witaszek

    (Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland)

  • Marcin Herkowiak

    (Institute of Technology and Life Sciences–National Research Institute, Falenty, Hrabska Avenue 3, 05-090 Raszyn, Poland)

  • Agnieszka A. Pilarska

    (Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, ul. Piątkowska 94A, 60-649 Poznań, Poland)

  • Wojciech Czekała

    (Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland)

Abstract

The aim of the study was to determine the possibilities of using cup plants ( Silphium perfoliatum L.) to generate energy. The energy balances of the combustion and anaerobic digestion were compared. The research showed that cup plants could be used as a raw material for solid fuel and for anaerobic digestion. An energy balance simulation showed that electricity could be generated through the anaerobic digestion of cup plants. The following amounts could be generated in the anaerobic digestion process: 1069 kWhe from 1 Mg of the raw material fragmented with an impact mill, 738.8 kWhe from 1 Mg of the raw material extruded at a temperature of 150 °C, and as much as 850.1 kWhe from 1 Mg of the raw material extruded at 175 °C. The energy balance of the combustion of biofuel in the form of cup plant pellets showed that 858.28 kWht could be generated from 1 Mg of the raw material. The combustion of solid biofuel generated a relatively low amount of heat in comparison with the expected amount of heat from a biogas-powered cogeneration system due to the high energy consumption of the processes of drying and agglomeration of the raw material for the production of pellets.

Suggested Citation

  • Kamil Witaszek & Marcin Herkowiak & Agnieszka A. Pilarska & Wojciech Czekała, 2022. "Methods of Handling the Cup Plant ( Silphium perfoliatum L.) for Energy Production," Energies, MDPI, vol. 15(5), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1897-:d:764562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. María E. Arce & Ángeles Saavedra & José L. Míguez & Enrique Granada & Antón Cacabelos, 2013. "Biomass Fuel and Combustion Conditions Selection in a Fixed Bed Combustor," Energies, MDPI, vol. 6(11), pages 1-17, November.
    2. Michał Krzyżaniak & Mariusz J. Stolarski & Łukasz Graban & Waldemar Lajszner & Tomasz Kuriata, 2020. "Camelina and Crambe Oil Crops for Bioeconomy—Straw Utilisation for Energy," Energies, MDPI, vol. 13(6), pages 1-8, March.
    3. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    4. Krzysztof Pilarski & Agnieszka A. Pilarska & Piotr Boniecki & Gniewko Niedbała & Karol Durczak & Kamil Witaszek & Natalia Mioduszewska & Ireneusz Kowalik, 2020. "The Efficiency of Industrial and Laboratory Anaerobic Digesters of Organic Substrates: The Use of the Biochemical Methane Potential Correction Coefficient," Energies, MDPI, vol. 13(5), pages 1-13, March.
    5. Bonan Huang & Chaoming Zheng & Qiuye Sun & Ruixue Hu, 2019. "Optimal Economic Dispatch for Integrated Power and Heating Systems Considering Transmission Losses," Energies, MDPI, vol. 12(13), pages 1-19, June.
    6. Qian, Yong & Sun, Shuzhou & Ju, Dehao & Shan, Xinxing & Lu, Xingcai, 2017. "Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 50-58.
    7. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    8. Mohammed, M.A.A. & Salmiaton, A. & Wan Azlina, W.A.K.G. & Mohammad Amran, M.S. & Fakhru'l-Razi, A. & Taufiq-Yap, Y.H., 2011. "Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1258-1270, February.
    9. Kamil Witaszek & Krzysztof Pilarski & Gniewko Niedbała & Agnieszka Anna Pilarska & Marcin Herkowiak, 2020. "Energy Efficiency of Comminution and Extrusion of Maize Substrates Subjected to Methane Fermentation," Energies, MDPI, vol. 13(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Czekała & Tomasz Jasiński & Mieczysław Grzelak & Kamil Witaszek & Jacek Dach, 2022. "Biogas Plant Operation: Digestate as the Valuable Product," Energies, MDPI, vol. 15(21), pages 1-11, November.
    2. Agnieszka A. Pilarska & Tomasz Kulupa & Adrianna Kubiak & Agnieszka Wolna-Maruwka & Krzysztof Pilarski & Alicja Niewiadomska, 2023. "Anaerobic Digestion of Food Waste—A Short Review," Energies, MDPI, vol. 16(15), pages 1-23, August.
    3. Jakub Mazurkiewicz, 2022. "The Biogas Potential of Oxytree Leaves," Energies, MDPI, vol. 15(23), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka A. Pilarska & Agnieszka Wolna-Maruwka & Alicja Niewiadomska & Krzysztof Pilarski & Mariusz Adamski & Aleksandra Grzyb & Jarosław Grządziel & Anna Gałązka, 2021. "Silica/Lignin Carrier as a Factor Increasing the Process Performance and Genetic Diversity of Microbial Communities in Laboratory-Scale Anaerobic Digesters," Energies, MDPI, vol. 14(15), pages 1-22, July.
    2. Małgorzata Fugol & Hubert Prask & Józef Szlachta & Arkadiusz Dyjakon & Marta Pasławska & Szymon Szufa, 2023. "Improving the Energetic Efficiency of Biogas Plants Using Enzymatic Additives to Anaerobic Digestion," Energies, MDPI, vol. 16(4), pages 1-12, February.
    3. Kamil Witaszek & Krzysztof Pilarski & Gniewko Niedbała & Agnieszka Anna Pilarska & Marcin Herkowiak, 2020. "Energy Efficiency of Comminution and Extrusion of Maize Substrates Subjected to Methane Fermentation," Energies, MDPI, vol. 13(8), pages 1-18, April.
    4. Krzysztof Pilarski & Agnieszka A. Pilarska & Piotr Boniecki & Gniewko Niedbała & Kamil Witaszek & Magdalena Piekutowska & Małgorzata Idzior-Haufa & Agnieszka Wawrzyniak, 2021. "Degree of Biomass Conversion in the Integrated Production of Bioethanol and Biogas," Energies, MDPI, vol. 14(22), pages 1-16, November.
    5. Agnieszka A. Pilarska & Krzysztof Pilarski, 2023. "Bioenergy Generation from Different Types of Waste by Anaerobic Digestion," Energies, MDPI, vol. 16(19), pages 1-4, October.
    6. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    7. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    8. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    9. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    10. Agnieszka A. Pilarska & Tomasz Kulupa & Adrianna Kubiak & Agnieszka Wolna-Maruwka & Krzysztof Pilarski & Alicja Niewiadomska, 2023. "Anaerobic Digestion of Food Waste—A Short Review," Energies, MDPI, vol. 16(15), pages 1-23, August.
    11. Ruth Chinyere Anyanwu & Cristina Rodriguez & Andy Durrant & Abdul Ghani Olabi, 2022. "Evaluation of Growth Rate and Biomass Productivity of Scenedesmus quadricauda and Chlorella vulgaris under Different LED Wavelengths and Photoperiods," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    12. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    13. Moritz von Cossel & Andrea Bauerle & Meike Boob & Ulrich Thumm & Martin Elsaesser & Iris Lewandowski, 2019. "The Performance of Mesotrophic Arrhenatheretum Grassland under Different Cutting Frequency Regimes for Biomass Production in Southwest Germany," Agriculture, MDPI, vol. 9(9), pages 1-17, September.
    14. Siswo Sumardiono & Gebyar Adisukmo & Muthia Hanif & Budiyono Budiyono & Heri Cahyono, 2021. "Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion," Sustainability, MDPI, vol. 13(13), pages 1-11, July.
    15. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    16. Mohd Faizal, Hasan & Shamsuddin, Hielfarith Suffri & M. Heiree, M. Harif & Muhammad Ariff Hanaffi, Mohd Fuad & Abdul Rahman, Mohd Rosdzimin & Rahman, Md. Mizanur & Latiff, Z.A., 2018. "Torrefaction of densified mesocarp fibre and palm kernel shell," Renewable Energy, Elsevier, vol. 122(C), pages 419-428.
    17. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    18. Mónica Duque-Acevedo & Luis Jesús Belmonte-Ureña & Natalia Yakovleva & Francisco Camacho-Ferre, 2020. "Analysis of the Circular Economic Production Models and Their Approach in Agriculture and Agricultural Waste Biomass Management," IJERPH, MDPI, vol. 17(24), pages 1-32, December.
    19. Gabriele Calì & Paolo Deiana & Claudia Bassano & Simone Meloni & Enrico Maggio & Michele Mascia & Alberto Pettinau, 2020. "Syngas Production, Clean-Up and Wastewater Management in a Demo-Scale Fixed-Bed Updraft Biomass Gasification Unit," Energies, MDPI, vol. 13(10), pages 1-15, May.
    20. Lester, Mason Scott & Bramstoft, Rasmus & Münster, Marie, 2020. "Analysis on Electrofuels in Future Energy Systems: A 2050 Case Study," Energy, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1897-:d:764562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.