IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1845-d1066752.html
   My bibliography  Save this article

Improving the Energetic Efficiency of Biogas Plants Using Enzymatic Additives to Anaerobic Digestion

Author

Listed:
  • Małgorzata Fugol

    (Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37a, 51-630 Wroclaw, Poland)

  • Hubert Prask

    (Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37a, 51-630 Wroclaw, Poland)

  • Józef Szlachta

    (Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37a, 51-630 Wroclaw, Poland)

  • Arkadiusz Dyjakon

    (Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37a, 51-630 Wroclaw, Poland)

  • Marta Pasławska

    (Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37a, 51-630 Wroclaw, Poland)

  • Szymon Szufa

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland)

Abstract

This study was carried out to estimate the relevance of biological supplementation in improving the economic efficiency of anaerobic digestion (AD). Three kinds of silages—maize, grass, and igniscum—were initially inoculated with digestate and then supplemented with one of four vaccines containing different bacteria species (APD ® , PPT ® , JENOR ® ) or a yeast and mold mixture (HAP ® ). In addition, each plant silage was fermented without any additives (control A—maize silage, B—grass silage, and C—igniscum silage). The biodegradability process was performed in batch tests at a mesophilic temperature (38 °C). To compare the energetic efficiency of AD, the process kinetics, biogas, and methane production were analyzed. We found that the applied supplementation measures improved biogas production in the case of maize and igniscum (7–62% higher than controls), but decreased the yield of AD when grass silage was fermented (2–34% lower than controls). The greatest increase in methane production (by 79%) was observed when maize silage was digested with the PPT ® pretreatment, with 427 Nm 3 ∙Mg −1 VS (volatile solids).

Suggested Citation

  • Małgorzata Fugol & Hubert Prask & Józef Szlachta & Arkadiusz Dyjakon & Marta Pasławska & Szymon Szufa, 2023. "Improving the Energetic Efficiency of Biogas Plants Using Enzymatic Additives to Anaerobic Digestion," Energies, MDPI, vol. 16(4), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1845-:d:1066752
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Browne, James D. & Murphy, Jerry D., 2013. "Assessment of the resource associated with biomethane from food waste," Applied Energy, Elsevier, vol. 104(C), pages 170-177.
    2. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production," Applied Energy, Elsevier, vol. 94(C), pages 129-140.
    3. Navodita Bhatnagar & David Ryan & Richard Murphy & Anne-Marie Enright, 2020. "Trace Element Supplementation and Enzyme Addition to Enhance Biogas Production by Anaerobic Digestion of Chicken Litter," Energies, MDPI, vol. 13(13), pages 1-14, July.
    4. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2022. "Importance of Feedstock in a Small-Scale Agricultural Biogas Plant," Energies, MDPI, vol. 15(20), pages 1-19, October.
    5. Krzysztof Pilarski & Agnieszka A. Pilarska & Piotr Boniecki & Gniewko Niedbała & Karol Durczak & Kamil Witaszek & Natalia Mioduszewska & Ireneusz Kowalik, 2020. "The Efficiency of Industrial and Laboratory Anaerobic Digesters of Organic Substrates: The Use of the Biochemical Methane Potential Correction Coefficient," Energies, MDPI, vol. 13(5), pages 1-13, March.
    6. Zheng, Zehui & Liu, Jinhuan & Yuan, Xufeng & Wang, Xiaofen & Zhu, Wanbin & Yang, Fuyu & Cui, Zongjun, 2015. "Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion," Applied Energy, Elsevier, vol. 151(C), pages 249-257.
    7. Adl, Mehrdad & Sheng, Kuichuan & Gharibi, Arash, 2012. "Technical assessment of bioenergy recovery from cotton stalks through anaerobic digestion process and the effects of inexpensive pre-treatments," Applied Energy, Elsevier, vol. 93(C), pages 251-260.
    8. Anna Nowicka & Marcin Zieliński & Marcin Dębowski & Magda Dudek, 2021. "Progress in the Production of Biogas from Maize Silage after Acid-Heat Pretreatment," Energies, MDPI, vol. 14(23), pages 1-16, December.
    9. Vervaeren, H. & Hostyn, K. & Ghekiere, G. & Willems, B., 2010. "Biological ensilage additives as pretreatment for maize to increase the biogas production," Renewable Energy, Elsevier, vol. 35(9), pages 2089-2093.
    10. Kamil Witaszek & Krzysztof Pilarski & Gniewko Niedbała & Agnieszka Anna Pilarska & Marcin Herkowiak, 2020. "Energy Efficiency of Comminution and Extrusion of Maize Substrates Subjected to Methane Fermentation," Energies, MDPI, vol. 13(8), pages 1-18, April.
    11. Sambusiti, C. & Monlau, F. & Ficara, E. & Carrère, H. & Malpei, F., 2013. "A comparison of different pre-treatments to increase methane production from two agricultural substrates," Applied Energy, Elsevier, vol. 104(C), pages 62-70.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    2. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    3. Kamil Witaszek & Marcin Herkowiak & Agnieszka A. Pilarska & Wojciech Czekała, 2022. "Methods of Handling the Cup Plant ( Silphium perfoliatum L.) for Energy Production," Energies, MDPI, vol. 15(5), pages 1-20, March.
    4. Agnieszka A. Pilarska & Agnieszka Wolna-Maruwka & Alicja Niewiadomska & Krzysztof Pilarski & Mariusz Adamski & Aleksandra Grzyb & Jarosław Grządziel & Anna Gałązka, 2021. "Silica/Lignin Carrier as a Factor Increasing the Process Performance and Genetic Diversity of Microbial Communities in Laboratory-Scale Anaerobic Digesters," Energies, MDPI, vol. 14(15), pages 1-22, July.
    5. Ahmad, Fiaz & Silva, Edson Luiz & Varesche, Maria Bernadete Amâncio, 2018. "Hydrothermal processing of biomass for anaerobic digestion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 108-124.
    6. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    7. Li, Dong & Huang, Xianbo & Wang, Qingjing & Yuan, Yuexiang & Yan, Zhiying & Li, Zhidong & Huang, Yajun & Liu, Xiaofeng, 2016. "Kinetics of methane production and hydrolysis in anaerobic digestion of corn stover," Energy, Elsevier, vol. 102(C), pages 1-9.
    8. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Li, Demao & Tang, Ruohao & Yu, Liang & Chen, Limei & Chen, Shulin & Xu, Song & Gao, Feng, 2020. "Effects of increasing organic loading rates on reactor performance and the methanogenic community in a new pilot upflow solid reactor for continuously processing food waste," Renewable Energy, Elsevier, vol. 153(C), pages 420-429.
    10. Chen, Xiaohua & Zhang, YaLei & Gu, Yu & Liu, Zhanguang & Shen, Zheng & Chu, Huaqiang & Zhou, Xuefei, 2014. "Enhancing methane production from rice straw by extrusion pretreatment," Applied Energy, Elsevier, vol. 122(C), pages 34-41.
    11. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    12. Krzysztof Pilarski & Agnieszka A. Pilarska & Piotr Boniecki & Gniewko Niedbała & Kamil Witaszek & Magdalena Piekutowska & Małgorzata Idzior-Haufa & Agnieszka Wawrzyniak, 2021. "Degree of Biomass Conversion in the Integrated Production of Bioethanol and Biogas," Energies, MDPI, vol. 14(22), pages 1-16, November.
    13. Abudi, Zaidun Naji & Hu, Zhiquan & Sun, Na & Xiao, Bo & Rajaa, Nagham & Liu, Cuixia & Guo, Dabin, 2016. "Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): Influence of TWAS and RS pretreatment and mixing ratio," Energy, Elsevier, vol. 107(C), pages 131-140.
    14. Koch, Konrad & Drewes, Jörg E., 2014. "Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data," Applied Energy, Elsevier, vol. 120(C), pages 11-15.
    15. Zhang, Yalei & Chen, Xiaohua & Gu, Yu & Zhou, Xuefei, 2015. "A physicochemical method for increasing methane production from rice straw: Extrusion combined with alkali pretreatment," Applied Energy, Elsevier, vol. 160(C), pages 39-48.
    16. Agnieszka A. Pilarska & Krzysztof Pilarski, 2023. "Bioenergy Generation from Different Types of Waste by Anaerobic Digestion," Energies, MDPI, vol. 16(19), pages 1-4, October.
    17. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    18. Senghor, A. & Dioh, R.M.N. & Müller, C. & Youm, I., 2017. "Cereal crops for biogas production: A review of possible impact of elevated CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 548-554.
    19. Triolo, Jin M. & Ward, Alastair J. & Pedersen, Lene & Løkke, Mette M. & Qu, Haiyan & Sommer, Sven G., 2014. "Near Infrared Reflectance Spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass," Applied Energy, Elsevier, vol. 116(C), pages 52-57.
    20. Agnieszka A. Pilarska & Tomasz Kulupa & Adrianna Kubiak & Agnieszka Wolna-Maruwka & Krzysztof Pilarski & Alicja Niewiadomska, 2023. "Anaerobic Digestion of Food Waste—A Short Review," Energies, MDPI, vol. 16(15), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1845-:d:1066752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.