IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v94y2012icp129-140.html
   My bibliography  Save this article

Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production

Author

Listed:
  • Chandra, R.
  • Takeuchi, H.
  • Hasegawa, T.

Abstract

This paper presents the results of an experimental batch methane fermentation (at 37°C mesophilic temperature) study carried out on untreated and pretreated substrates of rice straw using NaOH and hydrothermal pretreatments. 3% NaOH pretreatment was given to ground rice straw biomass for 120h at 37°C and hydrothermal pretreatment was given for 10min at 200°C. It was observed that NaOH addition is a mandatory requirement for maintaining a suitable range of pH and starting the biogas production from hydrothermal pretreated biomass slurry of rice straw. The fed substrate concentrations were maintained at 5% TS (50g TS/L). The study revealed into 140.0L/kg VSa biogas and 59.8L/kg VSa methane from untreated rice straw substrate. However, NaOH pretreated substrate resulted into 184.8L/kg VSa biogas and 74.1L/kg VSa methane. Hydrothermal pretreated followed by 5% NaOH added substrate resulted into highest biogas and methane production yields as 315.9L/kg VSa and 132.7L/kg VSa, respectively. NaOH pretreated substrate showed an increase of 132.0% in biogas production and 123.9% in methane production relative to the untreated substrate. However, the hydrothermal pretreated substrate had resulted into an increase of 225.6% in biogas production and 222.0% in methane production relative to untreated rice straw substrate. Hydrothermal pretreatment provided an accelerated pre-hydrolysis of biomass contents during the treatment process and thereby resulted into enhanced biogas and methane production yields.

Suggested Citation

  • Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production," Applied Energy, Elsevier, vol. 94(C), pages 129-140.
  • Handle: RePEc:eee:appene:v:94:y:2012:i:c:p:129-140
    DOI: 10.1016/j.apenergy.2012.01.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912000335
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Tu, Yi-Jian & Sheen, Herng-Kuang, 2011. "Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating," Applied Energy, Elsevier, vol. 88(8), pages 2726-2734, August.
    2. Harun, Razif & Jason, W.S.Y. & Cherrington, Tamara & Danquah, Michael K., 2011. "Exploring alkaline pre-treatment of microalgal biomass for bioethanol production," Applied Energy, Elsevier, vol. 88(10), pages 3464-3467.
    3. Kaparaju, Prasad & Serrano, María & Angelidaki, Irini, 2010. "Optimization of biogas production from wheat straw stillage in UASB reactor," Applied Energy, Elsevier, vol. 87(12), pages 3779-3783, December.
    4. Hilkiah Igoni, A. & Ayotamuno, M.J. & Eze, C.L. & Ogaji, S.O.T. & Probert, S.D., 2008. "Designs of anaerobic digesters for producing biogas from municipal solid-waste," Applied Energy, Elsevier, vol. 85(6), pages 430-438, June.
    5. Daianova, L. & Dotzauer, E. & Thorin, E. & Yan, J., 2012. "Evaluation of a regional bioenergy system with local production of biofuel for transportation, integrated with a CHP plant," Applied Energy, Elsevier, vol. 92(C), pages 739-749.
    6. Chandra, R. & Vijay, V.K. & Subbarao, P.M.V. & Khura, T.K., 2012. "Production of methane from anaerobic digestion of jatropha and pongamia oil cakes," Applied Energy, Elsevier, vol. 93(C), pages 148-159.
    7. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krishania, M. & Vijay, V.K. & Chandra, R., 2013. "Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay," Energy, Elsevier, vol. 57(C), pages 359-367.
    2. Chen, Xiaohua & Zhang, YaLei & Gu, Yu & Liu, Zhanguang & Shen, Zheng & Chu, Huaqiang & Zhou, Xuefei, 2014. "Enhancing methane production from rice straw by extrusion pretreatment," Applied Energy, Elsevier, vol. 122(C), pages 34-41.
    3. Singh, Shuchi & Khanna, Swati & Moholkar, Vijayanand S. & Goyal, Arun, 2014. "Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels," Applied Energy, Elsevier, vol. 129(C), pages 195-206.
    4. Abudi, Zaidun Naji & Hu, Zhiquan & Sun, Na & Xiao, Bo & Rajaa, Nagham & Liu, Cuixia & Guo, Dabin, 2016. "Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): Influence of TWAS and RS pretreatment and mixing ratio," Energy, Elsevier, vol. 107(C), pages 131-140.
    5. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    6. Sun, Shao-Long & Wen, Jia-Long & Ma, Ming-Guo & Sun, Run-Cang, 2014. "Enhanced enzymatic digestibility of bamboo by a combined system of multiple steam explosion and alkaline treatments," Applied Energy, Elsevier, vol. 136(C), pages 519-526.
    7. Choi, Chang Ho & Um, Byung Hwan & Kim, Young Soo & Oh, Kyeong Keun, 2013. "Improved enzyme efficiency of rapeseed straw through the two-stage fractionation process using sodium hydroxide and sulfuric acid," Applied Energy, Elsevier, vol. 102(C), pages 640-646.
    8. Daegi Kim & Kunio Yoshikawa & Ki Young Park, 2015. "Characteristics of Biochar Obtained by Hydrothermal Carbonization of Cellulose for Renewable Energy," Energies, MDPI, Open Access Journal, vol. 8(12), pages 1-9, December.
    9. Sambusiti, C. & Monlau, F. & Ficara, E. & Carrère, H. & Malpei, F., 2013. "A comparison of different pre-treatments to increase methane production from two agricultural substrates," Applied Energy, Elsevier, vol. 104(C), pages 62-70.
    10. repec:eee:rensus:v:90:y:2018:i:c:p:877-891 is not listed on IDEAS
    11. Ranjan, Amrita & Khanna, Swati & Moholkar, V.S., 2013. "Feasibility of rice straw as alternate substrate for biobutanol production," Applied Energy, Elsevier, vol. 103(C), pages 32-38.
    12. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1462-1476.
    13. Barakat, Abdellatif & Chuetor, Santi & Monlau, Florian & Solhy, Abderrahim & Rouau, Xavier, 2014. "Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis," Applied Energy, Elsevier, vol. 113(C), pages 97-105.
    14. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    15. Monlau, Florian & Latrille, Eric & Da Costa, Aline Carvalho & Steyer, Jean-Philippe & Carrère, Hélène, 2013. "Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment," Applied Energy, Elsevier, vol. 102(C), pages 1105-1113.
    16. Chandra, R. & Takeuchi, H. & Hasegawa, T. & Kumar, R., 2012. "Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments," Energy, Elsevier, vol. 43(1), pages 273-282.
    17. Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.
    18. Ilaria Zambon & Fabrizio Colosimo & Danilo Monarca & Massimo Cecchini & Francesco Gallucci & Andrea Rosario Proto & Richard Lord & Andrea Colantoni, 2016. "An Innovative Agro-Forestry Supply Chain for Residual Biomass: Physicochemical Characterisation of Biochar from Olive and Hazelnut Pellets," Energies, MDPI, Open Access Journal, vol. 9(7), pages 1-11, July.
    19. repec:eee:energy:v:127:y:2017:i:c:p:310-317 is not listed on IDEAS
    20. Chen, Man & Zhang, Fang & Zhang, Yan & Zeng, Raymond J., 2013. "Alkali production from bipolar membrane electrodialysis powered by microbial fuel cell and application for biogas upgrading," Applied Energy, Elsevier, vol. 103(C), pages 428-434.
    21. Zhang, Yalei & Chen, Xiaohua & Gu, Yu & Zhou, Xuefei, 2015. "A physicochemical method for increasing methane production from rice straw: Extrusion combined with alkali pretreatment," Applied Energy, Elsevier, vol. 160(C), pages 39-48.
    22. repec:gam:jeners:v:8:y:2015:i:12:p:14040-14048:d:60464 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:94:y:2012:i:c:p:129-140. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.