IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1988-d1071421.html
   My bibliography  Save this article

Point-Interval Forecasting for Electricity Load Based on Regular Fluctuation Component Extraction

Author

Listed:
  • Bilin Shao

    (School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Zixuan Yao

    (School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Yifan Qiang

    (School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

Abstract

The fluctuation and uncertainty of the electricity load bring challenges to load forecasting. Traditional point forecasting struggles to avoid errors, and pure interval forecasting may cause the problem of too wide an interval. In this paper, we combine point forecasting and interval forecasting and propose a point-interval forecasting model for electricity load based on regular fluctuation component extraction. Firstly, the variational modal decomposition is combined with the sample entropy to decompose the original load series into a strong regular fluctuation component and a weak regular fluctuation component. Then, the gate recurrent unit neural network is used for point forecasting of the strong regular fluctuation component, and the support vector quantile regression model is used for interval forecasting of the weak regular fluctuation component, and the results are accumulated to obtain the final forecasting intervals. Finally, experiments were conducted using electricity load data from two regional electricity grids in Shaanxi Province, China. The results show that combining the idea of point interval, point forecasting, and interval forecasting for components with different fluctuation regularity can effectively reduce the forecasting interval width while having high accuracy. The proposed model has higher forecasting accuracy and smaller mean interval width at various confidence levels compared to the commonly used models.

Suggested Citation

  • Bilin Shao & Zixuan Yao & Yifan Qiang, 2023. "Point-Interval Forecasting for Electricity Load Based on Regular Fluctuation Component Extraction," Energies, MDPI, vol. 16(4), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1988-:d:1071421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1988/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1988/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Jianming & Luo, Qingxi & Tang, Jingwei & Heng, Jiani & Deng, Yuwen, 2022. "Conformalized temporal convolutional quantile regression networks for wind power interval forecasting," Energy, Elsevier, vol. 248(C).
    2. Jooyong Shim & Yongtae Kim & Jangtaek Lee & Changha Hwang, 2012. "Estimating value at risk with semiparametric support vector quantile regression," Computational Statistics, Springer, vol. 27(4), pages 685-700, December.
    3. Ding, Lili & Zhao, Zhongchao & Wang, Lei, 2022. "Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?," Applied Energy, Elsevier, vol. 312(C).
    4. Serrano-Guerrero, Xavier & Briceño-León, Marco & Clairand, Jean-Michel & Escrivá-Escrivá, Guillermo, 2021. "A new interval prediction methodology for short-term electric load forecasting based on pattern recognition," Applied Energy, Elsevier, vol. 297(C).
    5. Zhang, Chu & Ji, Chunlei & Hua, Lei & Ma, Huixin & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction," Renewable Energy, Elsevier, vol. 197(C), pages 668-682.
    6. Xiangbing Gao & Bo Jia & Gen Li & Xiaojing Ma, 2022. "Calorific Value Forecasting of Coal Gangue with Hybrid Kernel Function–Support Vector Regression and Genetic Algorithm," Energies, MDPI, vol. 15(18), pages 1-15, September.
    7. Liu, Hongyi & Han, Hua & Sun, Yao & Shi, Guangze & Su, Mei & Liu, Zhangjie & Wang, Hongfei & Deng, Xiaofei, 2022. "Short-term wind power interval prediction method using VMD-RFG and Att-GRU," Energy, Elsevier, vol. 251(C).
    8. He, Yaoyao & Liu, Rui & Li, Haiyan & Wang, Shuo & Lu, Xiaofen, 2017. "Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory," Applied Energy, Elsevier, vol. 185(P1), pages 254-266.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Jianhua & He, Yaoyao & Gao, Zhiwei, 2023. "Wind power interval and point prediction model using neural network based multi-objective optimization," Energy, Elsevier, vol. 283(C).
    2. Ye, Xiaoling & Liu, Chengcheng & Xiong, Xiong & Qi, Yinyi, 2025. "Recurrent attention encoder–decoder network for multi-step interval wind power prediction," Energy, Elsevier, vol. 315(C).
    3. Zhang, Dongxue & Wang, Shuai & Liang, Yuqiu & Du, Zhiyuan, 2023. "A novel combined model for probabilistic load forecasting based on deep learning and improved optimizer," Energy, Elsevier, vol. 264(C).
    4. Xinyue Fu & Zhongkai Feng & Xinru Yao & Wenjie Liu, 2023. "A Novel Twin Support Vector Regression Model for Wind Speed Time-Series Interval Prediction," Energies, MDPI, vol. 16(15), pages 1-23, July.
    5. Hou, Guolian & Wang, Junjie & Fan, Yuzhen & Zhang, Jianhua & Huang, Congzhi, 2024. "A novel wind power deterministic and interval prediction framework based on the critic weight method, improved northern goshawk optimization, and kernel density estimation," Renewable Energy, Elsevier, vol. 226(C).
    6. Xiong, Zhanhang & Yao, Jianjiang & Huang, Yongmin & Yu, Zhaoxu & Liu, Yalei, 2024. "A wind speed forecasting method based on EMD-MGM with switching QR loss function and novel subsequence superposition," Applied Energy, Elsevier, vol. 353(PB).
    7. Xu, Mengjie & Li, Qianwen & Zhao, Zhengtang & Sun, Chuanwang, 2024. "Bilinear-DRTFT: Uncertainty prediction in electricity load considering multiple demand responses," Energy, Elsevier, vol. 309(C).
    8. Wang, Shuai & Wang, Qian & Lu, Helen & Zhang, Dongxue & Xing, Qianyi & Wang, Jianzhou, 2025. "Learning about tail risk: Machine learning and combination with regularization in market risk management," Omega, Elsevier, vol. 133(C).
    9. Leal, Jairon Isaias & Pitombeira-Neto, Anselmo Ramalho & Bueno, André Valente & Costa Rocha, Paulo Alexandre & de Andrade, Carla Freitas, 2025. "Probabilistic wind speed forecasting via Bayesian DLMs and its application in green hydrogen production," Applied Energy, Elsevier, vol. 382(C).
    10. Liu, Mingping & Wang, Jialong & Deng, Suhui & Zhong, Chunxiao & Wang, Yuhao, 2025. "Short-term load probabilistic forecasting based on non-equidistant monotone composite quantile regression and improved MICN," Energy, Elsevier, vol. 320(C).
    11. Meisenbacher, Stefan & Phipps, Kaleb & Taubert, Oskar & Weiel, Marie & Götz, Markus & Mikut, Ralf & Hagenmeyer, Veit, 2025. "AutoPQ: Automating quantile estimation from point forecasts in the context of sustainability," Applied Energy, Elsevier, vol. 392(C).
    12. Hu, Jiaxiang & Hu, Weihao & Cao, Di & Sun, Xinwu & Chen, Jianjun & Huang, Yuehui & Chen, Zhe & Blaabjerg, Frede, 2024. "Probabilistic net load forecasting based on transformer network and Gaussian process-enabled residual modeling learning method," Renewable Energy, Elsevier, vol. 225(C).
    13. Cheng, Runkun & Yang, Di & Liu, Da & Zhang, Guowei, 2024. "A reconstruction-based secondary decomposition-ensemble framework for wind power forecasting," Energy, Elsevier, vol. 308(C).
    14. Mariangela Guidolin & Stefano Rizzelli, 2025. "Dynamic Forecasting of Gas Consumption in Selected European Countries," Forecasting, MDPI, vol. 7(2), pages 1-29, May.
    15. Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
    16. Xing, Qianyi & Huang, Xiaojia & Wang, Kang & Wang, Jianzhou & Wang, Shuai, 2025. "MIG-EWPFS: An ensemble probabilistic wind speed forecasting system integrating multi-dimensional feature extraction, hybrid quantile regression, and Knee improved multi-objective optimization," Energy, Elsevier, vol. 324(C).
    17. Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
    18. Hua Li & Zhen Wang & Binbin Shan & Lingling Li, 2022. "Research on Multi-Step Prediction of Short-Term Wind Power Based on Combination Model and Error Correction," Energies, MDPI, vol. 15(22), pages 1-21, November.
    19. Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.
    20. Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1988-:d:1071421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.