IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225009818.html
   My bibliography  Save this article

Short-term load probabilistic forecasting based on non-equidistant monotone composite quantile regression and improved MICN

Author

Listed:
  • Liu, Mingping
  • Wang, Jialong
  • Deng, Suhui
  • Zhong, Chunxiao
  • Wang, Yuhao

Abstract

Improving the accuracy and reliability of short-term load probabilistic forecasting is significance of ensuring the stable operation of global energy systems. Although traditional monotone composite quantile regression effectively addresses the quantile crossing issue, it struggles with low coverage of prediction intervals and unreliable probability density curves due to equidistant increments in the conditional quantiles. To overcome this limitiation, this paper proposes a non-equidistant monotone composite quantile regression method for short-term load probabilistic forecasting. An optimized quantile increments function is developed, based on the assumption that the probability density curve follows a Gaussian distribution. Additionally, the accuracy of probability density forecasting depends on the median of the network output. Therefore, this paper introduces an improved multi-scale isometric convolution network (iMICN) to comprehensively extract feature information from load data. The iMICN model integrates Temporal two-dimensional (2D) variational modeling (TimesNet), feed forward network, and bidirectional long short-term memory (BiLSTM). TimeNet transforms one-dimensional time series into 2D space, utilizing 2D convolutions to deeply explore cyclic features in the seasonal components. BiLSTM further enhances the extraction of long-term dependencies by capturing dependencies between past and future information at a given time point. The superior performance of the proposed model is validated using two real-world datasets, demonstrating its ability to improve power system reliability, reduce energy waste, and contribute to achieving global renewable energy goals.

Suggested Citation

  • Liu, Mingping & Wang, Jialong & Deng, Suhui & Zhong, Chunxiao & Wang, Yuhao, 2025. "Short-term load probabilistic forecasting based on non-equidistant monotone composite quantile regression and improved MICN," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225009818
    DOI: 10.1016/j.energy.2025.135339
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225009818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Huiru & Guo, Sen, 2016. "An optimized grey model for annual power load forecasting," Energy, Elsevier, vol. 107(C), pages 272-286.
    2. Zhang, Dongdong & Chen, Baian & Zhu, Hongyu & Goh, Hui Hwang & Dong, Yunxuan & Wu, Thomas, 2023. "Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model," Energy, Elsevier, vol. 285(C).
    3. Bu, Xiangya & Wu, Qiuwei & Zhou, Bin & Li, Canbing, 2023. "Hybrid short-term load forecasting using CGAN with CNN and semi-supervised regression," Applied Energy, Elsevier, vol. 338(C).
    4. Sprangers, Olivier & Schelter, Sebastian & de Rijke, Maarten, 2023. "Parameter-efficient deep probabilistic forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 332-345.
    5. Peng, Tian & Zhang, Chu & Zhou, Jianzhong & Nazir, Muhammad Shahzad, 2021. "An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting," Energy, Elsevier, vol. 221(C).
    6. Zhang, Chu & Ji, Chunlei & Hua, Lei & Ma, Huixin & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction," Renewable Energy, Elsevier, vol. 197(C), pages 668-682.
    7. He, Yaoyao & Zheng, Yaya, 2018. "Short-term power load probability density forecasting based on Yeo-Johnson transformation quantile regression and Gaussian kernel function," Energy, Elsevier, vol. 154(C), pages 143-156.
    8. Xiao, Liye & Shao, Wei & Wang, Chen & Zhang, Kequan & Lu, Haiyan, 2016. "Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting," Applied Energy, Elsevier, vol. 180(C), pages 213-233.
    9. Sobhani, Masoud & Hong, Tao & Martin, Claude, 2020. "Temperature anomaly detection for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 36(2), pages 324-333.
    10. He, Yaoyao & Liu, Rui & Li, Haiyan & Wang, Shuo & Lu, Xiaofen, 2017. "Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory," Applied Energy, Elsevier, vol. 185(P1), pages 254-266.
    11. Imani, Maryam, 2021. "Electrical load-temperature CNN for residential load forecasting," Energy, Elsevier, vol. 227(C).
    12. He, Feifei & Zhou, Jianzhong & Mo, Li & Feng, Kuaile & Liu, Guangbiao & He, Zhongzheng, 2020. "Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest," Applied Energy, Elsevier, vol. 262(C).
    13. Yuqi Dong & Xuejiao Ma & Chenchen Ma & Jianzhou Wang, 2016. "Research and Application of a Hybrid Forecasting Model Based on Data Decomposition for Electrical Load Forecasting," Energies, MDPI, vol. 9(12), pages 1-30, December.
    14. Wang, Yi & Gan, Dahua & Sun, Mingyang & Zhang, Ning & Lu, Zongxiang & Kang, Chongqing, 2019. "Probabilistic individual load forecasting using pinball loss guided LSTM," Applied Energy, Elsevier, vol. 235(C), pages 10-20.
    15. Wei, Danxiang & Wang, Jianzhou & Niu, Xinsong & Li, Zhiwu, 2021. "Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks," Applied Energy, Elsevier, vol. 292(C).
    16. He, Yaoyao & Xu, Qifa & Wan, Jinhong & Yang, Shanlin, 2016. "Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function," Energy, Elsevier, vol. 114(C), pages 498-512.
    17. Zhang, Wenjie & Quan, Hao & Srinivasan, Dipti, 2018. "Parallel and reliable probabilistic load forecasting via quantile regression forest and quantile determination," Energy, Elsevier, vol. 160(C), pages 810-819.
    18. Hall, Peter & Wolff, Rodney C. L. & Yao, Qiwei, 1999. "Methods for estimating a conditional distribution function," LSE Research Online Documents on Economics 6631, London School of Economics and Political Science, LSE Library.
    19. Zhang, Shu & Wang, Yi & Zhang, Yutian & Wang, Dan & Zhang, Ning, 2020. "Load probability density forecasting by transforming and combining quantile forecasts," Applied Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing, Qianyi & Huang, Xiaojia & Wang, Kang & Wang, Jianzhou & Wang, Shuai, 2025. "MIG-EWPFS: An ensemble probabilistic wind speed forecasting system integrating multi-dimensional feature extraction, hybrid quantile regression, and Knee improved multi-objective optimization," Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).
    2. He, Yaoyao & Cao, Chaojin & Wang, Shuo & Fu, Hong, 2022. "Nonparametric probabilistic load forecasting based on quantile combination in electrical power systems," Applied Energy, Elsevier, vol. 322(C).
    3. Zhang, Shu & Wang, Yi & Zhang, Yutian & Wang, Dan & Zhang, Ning, 2020. "Load probability density forecasting by transforming and combining quantile forecasts," Applied Energy, Elsevier, vol. 277(C).
    4. Serrano-Guerrero, Xavier & Briceño-León, Marco & Clairand, Jean-Michel & Escrivá-Escrivá, Guillermo, 2021. "A new interval prediction methodology for short-term electric load forecasting based on pattern recognition," Applied Energy, Elsevier, vol. 297(C).
    5. Che, Jinxing & Yuan, Fang & Deng, Dewen & Jiang, Zheyong, 2023. "Ultra-short-term probabilistic wind power forecasting with spatial-temporal multi-scale features and K-FSDW based weight," Applied Energy, Elsevier, vol. 331(C).
    6. Xu Ran & Chang Xu & Lei Ma & Feifei Xue, 2022. "Wind Power Interval Prediction with Adaptive Rolling Error Correction Based on PSR-BLS-QR," Energies, MDPI, vol. 15(11), pages 1-22, June.
    7. Lemos-Vinasco, Julian & Bacher, Peder & Møller, Jan Kloppenborg, 2021. "Probabilistic load forecasting considering temporal correlation: Online models for the prediction of households’ electrical load," Applied Energy, Elsevier, vol. 303(C).
    8. Jiang, He & Dong, Yawei & Dong, Yao & Wang, Jianzhou, 2024. "Power load forecasting based on spatial–temporal fusion graph convolution network," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    9. Huang, Yanmei & Hasan, Najmul & Deng, Changrui & Bao, Yukun, 2022. "Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting," Energy, Elsevier, vol. 239(PC).
    10. Xu, Mengjie & Li, Qianwen & Zhao, Zhengtang & Sun, Chuanwang, 2024. "Bilinear-DRTFT: Uncertainty prediction in electricity load considering multiple demand responses," Energy, Elsevier, vol. 309(C).
    11. Brusaferri, Alessandro & Matteucci, Matteo & Spinelli, Stefano & Vitali, Andrea, 2022. "Probabilistic electric load forecasting through Bayesian Mixture Density Networks," Applied Energy, Elsevier, vol. 309(C).
    12. Xing, Qianyi & Huang, Xiaojia & Wang, Kang & Wang, Jianzhou & Wang, Shuai, 2025. "MIG-EWPFS: An ensemble probabilistic wind speed forecasting system integrating multi-dimensional feature extraction, hybrid quantile regression, and Knee improved multi-objective optimization," Energy, Elsevier, vol. 324(C).
    13. Jianzhou Wang & Chunying Wu & Tong Niu, 2019. "A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network," Sustainability, MDPI, vol. 11(2), pages 1-34, January.
    14. van der Meer, D.W. & Shepero, M. & Svensson, A. & Widén, J. & Munkhammar, J., 2018. "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes," Applied Energy, Elsevier, vol. 213(C), pages 195-207.
    15. Zulfiqar, M. & Kamran, M. & Rasheed, M.B. & Alquthami, T. & Milyani, A.H., 2023. "A hybrid framework for short term load forecasting with a navel feature engineering and adaptive grasshopper optimization in smart grid," Applied Energy, Elsevier, vol. 338(C).
    16. Shepero, Mahmoud & van der Meer, Dennis & Munkhammar, Joakim & Widén, Joakim, 2018. "Residential probabilistic load forecasting: A method using Gaussian process designed for electric load data," Applied Energy, Elsevier, vol. 218(C), pages 159-172.
    17. Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," Applied Energy, Elsevier, vol. 301(C).
    18. Li, Yiyan & Zhang, Si & Hu, Rongxing & Lu, Ning, 2021. "A meta-learning based distribution system load forecasting model selection framework," Applied Energy, Elsevier, vol. 294(C).
    19. Zhang, Chu & Ma, Huixin & Hua, Lei & Sun, Wei & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction," Energy, Elsevier, vol. 254(PA).
    20. Yuqi Dong & Xuejiao Ma & Chenchen Ma & Jianzhou Wang, 2016. "Research and Application of a Hybrid Forecasting Model Based on Data Decomposition for Electrical Load Forecasting," Energies, MDPI, vol. 9(12), pages 1-30, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225009818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.