IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024738.html
   My bibliography  Save this article

Wind power interval and point prediction model using neural network based multi-objective optimization

Author

Listed:
  • Zhu, Jianhua
  • He, Yaoyao
  • Gao, Zhiwei

Abstract

Wind power point and interval prediction plays an important role in dispatching. However, for obtaining both point estimations and prediction intervals (PIs), the existing models like constructing the probability density function are too complicated. This paper proposes a novel multi-objective upper and lower bound and point estimation (MOULPE) model. It constructs a neural network (NN) with double outputs to directly estimate the prediction intervals (PIs) and the median of PIs is calculated as point estimation. Considering wide decision-making space, the problem formulation of MOULPE is defined as three objectives which covers both evaluation indices of PIs and point prediction. Furthermore, based on elite opposition-based learning (EOBL), this paper improves non-dominated fast sort genetic algorithm-III (INSGA-III) to search the optimal front. Two criteria called prediction interval nominal confidence (PINC) and point prediction nominal error (PPNE) are adopted to pick out the best solution. According to the general requirements in literature, four examples of real wind power data are conducted. Compared with some state-of-the-art methods, the coverage probability of PIs constructed by the proposed model not only reaches the preset PINC, but the average width is also the lowest. Similarly, the point estimation error of the proposed method is less than PPNE.

Suggested Citation

  • Zhu, Jianhua & He, Yaoyao & Gao, Zhiwei, 2023. "Wind power interval and point prediction model using neural network based multi-objective optimization," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024738
    DOI: 10.1016/j.energy.2023.129079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.