IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1559-d1057637.html
   My bibliography  Save this article

Discount as an Example of a Guarantee Instrument in the Field of the Consumer’s Right to Energy of an Adequate Quality

Author

Listed:
  • Michał Białkowski

    (Faculty of Law and Administration, University of Szczecin, 70-240 Szczecin, Poland)

  • Beata Szetela

    (Department of Quantitative Methods, The Faculty of Management, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

Abstract

The European Union obliged the member states to introduce monitoring and control tools in order to improve the quality of provided transmission services and to guarantee the contracted amount of energy to end users. However, the EU has left the member states the freedom to create and implement compensation tools, enabling customers to claim their rights arising from non-compliance by transmission companies with the provisions of distribution agreements. The introduction of quantitative energy monitoring and an appropriate compensation mechanism is of great importance not only for end users but also for distribution companies. For end users, this would be a tool to enforce their rights against transmission companies, while transmission companies would gain a tool to control and manage both legal and financial risks. The aim of this study is to analyze discount as an example of a guarantee instrument in the field of the consumer’s right to energy of an adequate quality based on the Polish example supported by a systematic legal review. In the EU, discount is not regulated directly at the EU level; hence, it is impossible to base it on acquis and analyze it through the prism of EU regulation. In Poland, the possibility for recipients to apply for a discount for poor-quality electricity was introduced into the first version of the Energy Law in 1998, long before the adoption of Directive 2019/944 by the EU. The fundamental issues that were addressed and discussed in this paper were as follows: (1) Is the discount compensatory in nature? (2) Should it be included in the compensation due to the consumer? (3) Is it possible to reduce it when the power supply interruption results from circumstances beyond the control of the energy company (e.g., unforeseen weather conditions)?

Suggested Citation

  • Michał Białkowski & Beata Szetela, 2023. "Discount as an Example of a Guarantee Instrument in the Field of the Consumer’s Right to Energy of an Adequate Quality," Energies, MDPI, vol. 16(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1559-:d:1057637
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1559/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1559/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diestelmeier, Lea, 2019. "Changing power: Shifting the role of electricity consumers with blockchain technology – Policy implications for EU electricity law," Energy Policy, Elsevier, vol. 128(C), pages 189-196.
    2. Inês, Campos & Guilherme, Pontes Luz & Esther, Marín-González & Swantje, Gährs & Stephen, Hall & Lars, Holstenkamp, 2020. "Regulatory challenges and opportunities for collective renewable energy prosumers in the EU," Energy Policy, Elsevier, vol. 138(C).
    3. Umar, Abdullah & Kumar, Deepak & Ghose, Tirthadip, 2022. "Blockchain-based decentralized energy intra-trading with battery storage flexibility in a community microgrid system," Applied Energy, Elsevier, vol. 322(C).
    4. Tully, Stephen, 2006. "The Human Right to Access Electricity," The Electricity Journal, Elsevier, vol. 19(3), pages 30-39, April.
    5. M. Bilal Nasir & Asif Hussain & Kamran Ali Khan Niazi & Mashood Nasir, 2022. "An Optimal Energy Management System (EMS) for Residential and Industrial Microgrids," Energies, MDPI, vol. 15(17), pages 1-18, August.
    6. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    7. Stefan Bouzarovski & Harriet Thomson & Marine Cornelis, 2021. "Confronting Energy Poverty in Europe: A Research and Policy Agenda," Energies, MDPI, vol. 14(4), pages 1-19, February.
    8. Lowitzsch, J. & Hoicka, C.E. & van Tulder, F.J., 2020. "Renewable energy communities under the 2019 European Clean Energy Package – Governance model for the energy clusters of the future?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    9. Pietzcker, Robert & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," EconStor Preprints 222579, ZBW - Leibniz Information Centre for Economics, revised 2021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julio A. de Bitencourt & Daniel P. Bernardon & Henrique S. Eichkoff & Vinicius J. Garcia & Daiana W. Silva & Lucas M. Chiara & Renan L. B. Gomes & Sebastian A. Butto & Solange M. K. Barbosa & Alejandr, 2023. "An Alternative Regulation of Compensation Mechanisms for Electric Energy Transgressions of Service Quality Limits in Dispersed and Seasonal Areas," Energies, MDPI, vol. 16(15), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    2. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    3. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    4. Martina Ricci & Marcello Benvenuto & Stefano Gino Mosele & Roberto Pacciani & Michele Marconcini, 2022. "Predicting the Impact of Compressor Flexibility Improvements on Heavy-Duty Gas Turbines for Minimum and Base Load Conditions," Energies, MDPI, vol. 15(20), pages 1-14, October.
    5. Hänsel, Martin C. & Franks, Max & Kalkuhl, Matthias & Edenhofer, Ottmar, 2022. "Optimal carbon taxation and horizontal equity: A welfare-theoretic approach with application to German household data," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    6. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system," Energy, Elsevier, vol. 252(C).
    7. Mariusz Pyra, 2023. "Simulation of the Progress of the Decarbonization Process in Poland’s Road Transport Sector," Energies, MDPI, vol. 16(12), pages 1-21, June.
    8. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    10. Jenny Palm, 2021. "The Transposition of Energy Communities into Swedish Regulations: Overview and Critique of Emerging Regulations," Energies, MDPI, vol. 14(16), pages 1-15, August.
    11. Che, Shuai & Wang, Jun & Chen, Honghang, 2023. "Can China's decentralized energy governance reduce carbon emissions? Evidence from new energy demonstration cities," Energy, Elsevier, vol. 284(C).
    12. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    13. Andrew Chapman & Hidemichi Fujii, 2022. "The Potential Role of Flying Vehicles in Progressing the Energy Transition," Energies, MDPI, vol. 15(19), pages 1-11, October.
    14. Piotr Raźniak & Sławomir Dorocki & Tomasz Rachwał & Anna Winiarczyk-Raźniak, 2021. "The Role of the Energy Sector in the Command and Control Function of Cities in Conditions of Sustainability Transitions," Energies, MDPI, vol. 14(22), pages 1-14, November.
    15. Vallecha, Harshit & Bhattacharjee, Debraj & Osiri, John Kalu & Bhola, Prabha, 2021. "Evaluation of barriers and enablers through integrative multicriteria decision mapping: Developing sustainable community energy in Indian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Gabriel J. Felbermayr, 2021. "Steuerliche Aspekte der Klimapolitik: über Steuern, Zölle und Subventionen," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 101(6), pages 428-431, June.
    17. Alexey Cherepovitsyn & Gennady Stroykov & Alexander Nevolin, 2023. "Efficiency of Low-Carbon Technologies Implementation at Non-Ferrous Metallurgy Enterprises under the Conditions of Carbon-Regulation Development in Russia," Sustainability, MDPI, vol. 15(24), pages 1-22, December.
    18. Aleksandra Komorowska, 2021. "Can Decarbonisation and Capacity Market Go Together? The Case Study of Poland," Energies, MDPI, vol. 14(16), pages 1-35, August.
    19. Adrian Tantau & Greta Marilena Puscasu & Silvia Elena Cristache & Cristina Alpopi & Laurentiu Fratila & Daniel Moise & Georgeta Narcisa Ciobotar, 2022. "A Deep Understanding of Romanian Attitude and Perception Regarding Nuclear Energy as Green Investment Promoted by the European Green Deal," Energies, MDPI, vol. 16(1), pages 1-14, December.
    20. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1559-:d:1057637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.