IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1231-d1044695.html
   My bibliography  Save this article

Experimental Study on Active Thermal Protection for Electronic Devices Used in Deep−Downhole−Environment Exploration

Author

Listed:
  • Shihong Ma

    (Key Laboratory of Thermo−Fluid Science and Engineering, MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Shuo Zhang

    (Xi’an Shanguang Energy Co., Ltd., Xi’an 710075, China)

  • Jian Wu

    (State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yongmin Zhang

    (State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China)

  • Wenxiao Chu

    (Key Laboratory of Thermo−Fluid Science and Engineering, MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Qiuwang Wang

    (Key Laboratory of Thermo−Fluid Science and Engineering, MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Electronic devices are commonly used for exploiting and extracting shale oil in deep downhole environments. However, high−temperature−and−pressure downhole environments jeopardize the safe operation of electronic components due to their severe thermal conditions. In the present study, an active thermal−insulation system is proposed, which consists of a spiral annular cooling plate (ACP), a thermal storage container with phase−change material (PCM) and an aerogel mat (AM). The effect of the ACP’s structure, layout and working−medium flowrate on the heat−protection performance were experimentally measured; temperature−control capability and system−operating time were used as the criteria. The results show that the AM layer is necessary and that the inner−ACP case displays better thermal−protection performance. Next, a dimensionless temperature−control factor (TCF) was proposed to evaluate the trade−off between temperature control and the system’s operating time. Note that the TCF of the spiral ACP can be improved by 1.62 times compared to the spiral−ACP case. Since the lower flowrate allows better TCF and longer operating times, intermittent control of the flowrate with a 1−minute startup and 2−minute stopping time at 200 mL/min can further extend the system’s operating time to 5 h, and the TCF is 3.3 times higher than with a constant flowrate of vm = 200 mL/min.

Suggested Citation

  • Shihong Ma & Shuo Zhang & Jian Wu & Yongmin Zhang & Wenxiao Chu & Qiuwang Wang, 2023. "Experimental Study on Active Thermal Protection for Electronic Devices Used in Deep−Downhole−Environment Exploration," Energies, MDPI, vol. 16(3), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1231-:d:1044695
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soprani, S. & Haertel, J.H.K. & Lazarov, B.S. & Sigmund, O. & Engelbrecht, K., 2016. "A design approach for integrating thermoelectric devices using topology optimization," Applied Energy, Elsevier, vol. 176(C), pages 49-64.
    2. Gulfam, Raza & Zhang, Peng & Meng, Zhaonan, 2019. "Advanced thermal systems driven by paraffin-based phase change materials – A review," Applied Energy, Elsevier, vol. 238(C), pages 582-611.
    3. Ling, Ziye & Wang, Fangxian & Fang, Xiaoming & Gao, Xuenong & Zhang, Zhengguo, 2015. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling," Applied Energy, Elsevier, vol. 148(C), pages 403-409.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leland Weiss & Ramanshu Jha, 2023. "Small-Scale Phase Change Materials in Low-Temperature Applications: A Review," Energies, MDPI, vol. 16(6), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Su, Weiguang & Cai, Pei & Kang, Ruigeng & Wang, Li & Kokogiannakis, Georgios & Chen, Jun & Gao, Liying & Li, Anqing & Xu, Chonghai, 2022. "Development of temperature-responsive transmission switch film (TRTSF) using phase change material for self-adaptive radiative cooling," Applied Energy, Elsevier, vol. 322(C).
    5. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    6. Choon Kit Chan & Chi Hong Chung & Jeyagopi Raman, 2023. "Optimizing Thermal Management System in Electric Vehicle Battery Packs for Sustainable Transportation," Sustainability, MDPI, vol. 15(15), pages 1-14, August.
    7. Li, Xinyi & Cui, Wei & Simon, Terrence & Ma, Ting & Cui, Tianhong & Wang, Qiuwang, 2021. "Pore-scale analysis on selection of composite phase change materials for photovoltaic thermal management," Applied Energy, Elsevier, vol. 302(C).
    8. Zhao, C.Y. & Tao, Y.B. & Yu, Y.S., 2022. "Thermal conductivity enhancement of phase change material with charged nanoparticle: A molecular dynamics simulation," Energy, Elsevier, vol. 242(C).
    9. Zhang, Long & Zhou, Kechao & Wei, Quiping & Ma, Li & Ye, Wentao & Li, Haichao & Zhou, Bo & Yu, Zhiming & Lin, Cheng-Te & Luo, Jingting & Gan, Xueping, 2019. "Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage," Applied Energy, Elsevier, vol. 233, pages 208-219.
    10. Jilte, Ravindra & Afzal, Asif & Panchal, Satyam, 2021. "A novel battery thermal management system using nano-enhanced phase change materials," Energy, Elsevier, vol. 219(C).
    11. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    12. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    13. Saeed, Ali & Karimi, Nader & Paul, Manosh C., 2021. "Analysis of the unsteady thermal response of a Li-ion battery pack to dynamic loads," Energy, Elsevier, vol. 231(C).
    14. Jin, Xianrong & Duan, Xiting & Jiang, Wenjuan & Wang, Yan & Zou, Youlan & Lei, Weixin & Sun, Lizhong & Ma, Zengsheng, 2021. "Structural design of a composite board/heat pipe based on the coupled electro-chemical-thermal model in battery thermal management system," Energy, Elsevier, vol. 216(C).
    15. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Zhao, Xiaohuan & E, Jiaqiang & Zhang, Zhiqing & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Leng, Erwei & Han, Dandan & Hu, Wenyu, 2020. "A review on heat enhancement in thermal energy conversion and management using Field Synergy Principle," Applied Energy, Elsevier, vol. 257(C).
    17. Madruga, Santiago & Mendoza, Carolina, 2022. "Introducing a new concept for enhanced micro-energy harvesting of thermal fluctuations through the Marangoni effect," Applied Energy, Elsevier, vol. 306(PA).
    18. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    19. Wang, Shunli & Shang, Liping & Li, Zhanfeng & Deng, Hu & Li, Jianchao, 2016. "Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation," Applied Energy, Elsevier, vol. 166(C), pages 44-58.
    20. Shuwen Zhou & Yuemin Zhao & Shangyuan Gao, 2021. "Analysis of Heat Dissipation and Preheating Module for Vehicle Lithium Iron Phosphate Battery," Energies, MDPI, vol. 14(19), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1231-:d:1044695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.