IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1132-d1041655.html
   My bibliography  Save this article

A Short-Term Forecasting of Wind Power Outputs Based on Gradient Boosting Regression Tree Algorithms

Author

Listed:
  • Soyoung Park

    (Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul 03760, Republic of Korea)

  • Solyoung Jung

    (Korea Electric Power Corporation Research Institute, Daejeon 34056, Republic of Korea)

  • Jaegul Lee

    (Korea Electric Power Corporation Research Institute, Daejeon 34056, Republic of Korea)

  • Jin Hur

    (Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul 03760, Republic of Korea)

Abstract

With growing interest in sustainability and net-zero emissions, there has been a global trend to integrate wind power into energy grids. However, challenges such as the intermittency of wind energy remain, which leads to a significant need for accurate wind-power forecasting. Therefore, this study focuses on creating a wind-power generation-forecasting model using a machine-learning algorithm. In this study, we used the gradient-boosting machine (GBM) algorithm to build a wind-power forecasting model. Time-series data with a 15 min interval from Jeju’s wind farms were applied to the model as input data. The short-term forecasting model trained by the same month with the test set turns out to have the best performance, with an NMAE value of 5.15%. Furthermore, the forecasting results were applied to Jeju’s power system to carry out a grid-security analysis. The improved accuracy of wind-power forecasting and its impact on the security of electrical grids in this study potentially contributes to greater integration of wind energy.

Suggested Citation

  • Soyoung Park & Solyoung Jung & Jaegul Lee & Jin Hur, 2023. "A Short-Term Forecasting of Wind Power Outputs Based on Gradient Boosting Regression Tree Algorithms," Energies, MDPI, vol. 16(3), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1132-:d:1041655
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Upma Singh & Mohammad Rizwan & Muhannad Alaraj & Ibrahim Alsaidan, 2021. "A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments," Energies, MDPI, vol. 14(16), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao-Ming Huang & Shin-Ju Chen & Sung-Pei Yang & Hsin-Jen Chen, 2023. "One-Day-Ahead Hourly Wind Power Forecasting Using Optimized Ensemble Prediction Methods," Energies, MDPI, vol. 16(6), pages 1-22, March.
    2. Wen-Chang Tsai & Chih-Ming Hong & Chia-Sheng Tu & Whei-Min Lin & Chiung-Hsing Chen, 2023. "A Review of Modern Wind Power Generation Forecasting Technologies," Sustainability, MDPI, vol. 15(14), pages 1-40, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.
    2. Chengqing, Yu & Guangxi, Yan & Chengming, Yu & Yu, Zhang & Xiwei, Mi, 2023. "A multi-factor driven spatiotemporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks," Energy, Elsevier, vol. 263(PE).
    3. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    4. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    5. Alberto Barbaresi & Mattia Ceccarelli & Giulia Menichetti & Daniele Torreggiani & Patrizia Tassinari & Marco Bovo, 2022. "Application of Machine Learning Models for Fast and Accurate Predictions of Building Energy Need," Energies, MDPI, vol. 15(4), pages 1-16, February.
    6. Saeed Salah & Husain R. Alsamamra & Jawad H. Shoqeir, 2022. "Exploring Wind Speed for Energy Considerations in Eastern Jerusalem-Palestine Using Machine-Learning Algorithms," Energies, MDPI, vol. 15(7), pages 1-16, April.
    7. Akbal, Yıldırım & Ünlü, Kamil Demirberk, 2022. "A univariate time series methodology based on sequence-to-sequence learning for short to midterm wind power production," Renewable Energy, Elsevier, vol. 200(C), pages 832-844.
    8. Fuping Liu & Ying Liu & Chen Yang & Ruixun Lai, 2022. "A New Precipitation Prediction Method Based on CEEMDAN-IWOA-BP Coupling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4785-4797, September.
    9. Chao-Ming Huang & Shin-Ju Chen & Sung-Pei Yang & Hsin-Jen Chen, 2023. "One-Day-Ahead Hourly Wind Power Forecasting Using Optimized Ensemble Prediction Methods," Energies, MDPI, vol. 16(6), pages 1-22, March.
    10. Nathan Oaks Farrar & Mohd Hasan Ali & Dipankar Dasgupta, 2023. "Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1132-:d:1041655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.