A Review of Industrial Load Flexibility Enhancement for Demand-Response Interaction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, Kang & Wang, Chengfu & Yao, Wenliang & Zhang, Zhenwei & Liu, Chao & Dong, Xiaoming & Yang, Ming & Wang, Yong, 2024. "Embedding P2P transaction into demand response exchange: A cooperative demand response management framework for IES," Applied Energy, Elsevier, vol. 367(C).
- Jia, Hongjie & Wang, Xiaoyu & Jin, Xiaolong & Cheng, Lin & Mu, Yunfei & Yu, Xiaodan & Wei, Wei, 2024. "Optimal pricing of integrated community energy system for building prosumers with P2P multi-energy trading," Applied Energy, Elsevier, vol. 365(C).
- Zeng, Bo & Zhou, Yinyu & Xu, Xinzhu & Cai, Danting, 2024. "Bi-level planning approach for incorporating the demand-side flexibility of cloud data centers under electricity-carbon markets," Applied Energy, Elsevier, vol. 357(C).
- Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2024. "Real-time automatic control of multi-energy system for smart district community: A coupling ensemble prediction model and safe deep reinforcement learning," Energy, Elsevier, vol. 304(C).
- Li, Kangping & Li, Zhenghui & Huang, Chunyi & Ai, Qian, 2024. "Online transfer learning-based residential demand response potential forecasting for load aggregator," Applied Energy, Elsevier, vol. 358(C).
- Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
- Yin, Rongxin & Kara, Emre C. & Li, Yaping & DeForest, Nicholas & Wang, Ke & Yong, Taiyou & Stadler, Michael, 2016. "Quantifying flexibility of commercial and residential loads for demand response using setpoint changes," Applied Energy, Elsevier, vol. 177(C), pages 149-164.
- Huang, Chunyi & Li, Kangping & Zhang, Ning, 2025. "Strategic joint bidding and pricing of load aggregators in day-ahead demand response market," Applied Energy, Elsevier, vol. 377(PC).
- Li, Songrui & Zhang, Lihui & Nie, Lei & Wang, Jianing, 2022. "Trading strategy and benefit optimization of load aggregators in integrated energy systems considering integrated demand response: A hierarchical Stackelberg game," Energy, Elsevier, vol. 249(C).
- Haakana, Juha & Tikka, Ville & Lassila, Jukka & Partanen, Jarmo, 2017. "Methodology to analyze combined heat and power plant operation considering electricity reserve market opportunities," Energy, Elsevier, vol. 127(C), pages 408-418.
- Fu, Guoyin, 2018. "Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system," Energy, Elsevier, vol. 148(C), pages 269-282.
- Upma Singh & Mohammad Rizwan & Muhannad Alaraj & Ibrahim Alsaidan, 2021. "A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments," Energies, MDPI, vol. 14(16), pages 1-21, August.
- Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
- Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
- Liu, Wei & Li, Zhuangzhuang & Xing, Xinran & Chen, Xi & Wang, Yufei & Wang, Xuechun, 2025. "Non-cooperative game optimization for virtual power plants considering carbon trading market," Energy, Elsevier, vol. 317(C).
- Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Yang, Yuyan & Xu, Xiao & Pan, Li & Liu, Junyong & Liu, Jichun & Hu, Weihao, 2024. "Distributed prosumer trading in the electricity and carbon markets considering user utility," Renewable Energy, Elsevier, vol. 228(C).
- Lou, Chengwei & Jin, Zekai & Zhou, Yue & Tang, Wei & Zhang, Lu & Yang, Jin, 2025. "Privacy-protected P2P electricity and carbon emission trading markets based on distributionally robust proximal atomic coordination algorithm," Applied Energy, Elsevier, vol. 384(C).
- Hu, Junfeng & Yan, Qingyou & Kahrl, Fredrich & Liu, Xu & Wang, Peng & Lin, Jiang, 2021. "Evaluating the ancillary services market for large-scale renewable energy integration in China's northeastern power grid," Utilities Policy, Elsevier, vol. 69(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2024. "Real-time automatic control of multi-energy system for smart district community: A coupling ensemble prediction model and safe deep reinforcement learning," Energy, Elsevier, vol. 304(C).
- Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
- Wang, Huilong & Wang, Shengwei, 2021. "A hierarchical optimal control strategy for continuous demand response of building HVAC systems to provide frequency regulation service to smart power grids," Energy, Elsevier, vol. 230(C).
- Roksana Yasmin & B. M. Ruhul Amin & Rakibuzzaman Shah & Andrew Barton, 2024. "A Survey of Commercial and Industrial Demand Response Flexibility with Energy Storage Systems and Renewable Energy," Sustainability, MDPI, vol. 16(2), pages 1-41, January.
- Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
- Hu, Maomao & Xiao, Fu & Wang, Shengwei, 2021. "Neighborhood-level coordination and negotiation techniques for managing demand-side flexibility in residential microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Zhang, Zhihui & Jing, Rui & Lin, Jian & Wang, Xiaonan & van Dam, Koen H. & Wang, Meng & Meng, Chao & Xie, Shan & Zhao, Yingru, 2020. "Combining agent-based residential demand modeling with design optimization for integrated energy systems planning and operation," Applied Energy, Elsevier, vol. 263(C).
- Li, Kangping & Li, Zhenghui & Huang, Chunyi & Ai, Qian, 2024. "Online transfer learning-based residential demand response potential forecasting for load aggregator," Applied Energy, Elsevier, vol. 358(C).
- Li, Sihui & Peng, Jinqing & Wang, Meng & Wang, Kai & Li, Houpei & Lu, Chujie, 2024. "Approaching nearly zero energy of PV direct air conditioners by integrating building design, load flexibility and PCM," Renewable Energy, Elsevier, vol. 221(C).
- Hua, Haochen & Du, Can & Chen, Xingying & Kong, Hui & Li, Kang & Liu, Zhao & Naidoo, Pathmanathan & Lv, Mian & Hu, Nan & Fu, Ming & Li, Bing, 2024. "Optimal dispatch of multiple interconnected-integrated energy systems considering multi-energy interaction and aggregated demand response for multiple stakeholders," Applied Energy, Elsevier, vol. 376(PA).
- Hu, Maomao & Xiao, Fu, 2020. "Quantifying uncertainty in the aggregate energy flexibility of high-rise residential building clusters considering stochastic occupancy and occupant behavior," Energy, Elsevier, vol. 194(C).
- Tripathy, Prajukta & Jena, Pabitra Kumar & Mishra, Bikash Ranjan, 2024. "Systematic literature review and bibliometric analysis of energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
- Yin, Boyi & Zhu, Wenjiang & Tang, Cheng & Wang, Can & Xu, Xinhai, 2025. "Hierarchical optimal scheduling of IES considering SOFC degradation, internal and external uncertainties," Applied Energy, Elsevier, vol. 381(C).
- Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
- Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
- Caixin Yan & Zhifeng Qiu, 2025. "Review of Power Market Optimization Strategies Based on Industrial Load Flexibility," Energies, MDPI, vol. 18(7), pages 1-41, March.
- Wang, Jianjun & Liu, Fang & Li, Li & Zhang, Jian, 2022. "More than innovativeness: Comparing residents’ motivations for participating renewable energy communities in different innovation segments," Renewable Energy, Elsevier, vol. 197(C), pages 552-563.
- Kazmi, Hussain & Suykens, Johan & Balint, Attila & Driesen, Johan, 2019. "Multi-agent reinforcement learning for modeling and control of thermostatically controlled loads," Applied Energy, Elsevier, vol. 238(C), pages 1022-1035.
- Lork, Clement & Li, Wen-Tai & Qin, Yan & Zhou, Yuren & Yuen, Chau & Tushar, Wayes & Saha, Tapan K., 2020. "An uncertainty-aware deep reinforcement learning framework for residential air conditioning energy management," Applied Energy, Elsevier, vol. 276(C).
More about this item
Keywords
industrial load flexibility; multi-energy flow systems; demand response; carbon market; sustainable development goals; optimization computing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4938-:d:1665951. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.