IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3462-d1692282.html
   My bibliography  Save this article

Joint Planning of Renewable Energy and Electric Vehicle Charging Stations Based on a Carbon Pricing Optimization Mechanism

Author

Listed:
  • Shanli Wang

    (Hainan Power Grid Co., Ltd., Haikou 570203, China)

  • Bing Fang

    (Hainan Power Grid Co., Ltd., Haikou 570203, China)

  • Jiayi Zhang

    (Hainan Power Grid Co., Ltd., Haikou 570203, China)

  • Zewei Chen

    (Hainan Power Grid Co., Ltd., Haikou 570203, China)

  • Mingzhe Wen

    (Hainan Power Grid Co., Ltd., Haikou 570203, China)

  • Huanxiu Xiao

    (Hainan Power Grid Co., Ltd., Haikou 570203, China)

  • Mengyao Jiang

    (Institute of New Energy, Wuhan 430206, China)

Abstract

The integration of renewable energy and electric vehicle (EV) charging stations into distribution systems presents critical challenges, including the inherent variability of renewable generation, the complex behavioral patterns of EV users, and the need for effective carbon emission mitigation. To address these challenges, this paper proposes a novel distribution system planning method based on the carbon pricing optimization mechanism. First, to address the strong randomness and volatility of renewable energy, a prediction model for renewable energy output considering climatic conditions is established to characterize the output features of wind and solar power. Subsequently, a charging station model is constructed based on the behavioral characteristics of electric vehicle users. Then, an optimized carbon trading price mechanism incorporating the carbon price growth rate is introduced into the carbon emission cost accounting. Based on this, a joint planning model for the power and transportation systems is developed, aiming to minimize the total economic cost while accounting for renewable energy integration and electric vehicle charging station deployment. In the case study, the proposed model is validated using the actual operational data of a specific region and a modified IEEE 33-node system, demonstrating the rationality and effectiveness of the model.

Suggested Citation

  • Shanli Wang & Bing Fang & Jiayi Zhang & Zewei Chen & Mingzhe Wen & Huanxiu Xiao & Mengyao Jiang, 2025. "Joint Planning of Renewable Energy and Electric Vehicle Charging Stations Based on a Carbon Pricing Optimization Mechanism," Energies, MDPI, vol. 18(13), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3462-:d:1692282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3462/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3462/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Despoina Kothona & Aggelos S. Bouhouras, 2022. "A Two-Stage EV Charging Planning and Network Reconfiguration Methodology towards Power Loss Minimization in Low and Medium Voltage Distribution Networks," Energies, MDPI, vol. 15(10), pages 1-17, May.
    2. Soyoung Park & Solyoung Jung & Jaegul Lee & Jin Hur, 2023. "A Short-Term Forecasting of Wind Power Outputs Based on Gradient Boosting Regression Tree Algorithms," Energies, MDPI, vol. 16(3), pages 1-12, January.
    3. Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    4. Shiqian Wang & Bo Liu & Qiuyan Li & Ding Han & Jianshu Zhou & Yue Xiang, 2025. "EV Charging Behavior Analysis and Load Prediction via Order Data of Charging Stations," Sustainability, MDPI, vol. 17(5), pages 1-16, February.
    5. Xuejun Li & Jiaxin Qian & Changhai Yang & Boyang Chen & Xiang Wang & Zongnan Jiang, 2024. "New Power System Planning and Evolution Path with Multi-Flexibility Resource Coordination," Energies, MDPI, vol. 17(1), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Yulong & Liu, Ming-De & Ding, Lin & Ma, Yong-Jie, 2021. "Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition," Applied Energy, Elsevier, vol. 301(C).
    2. Li, Qingyang & Wang, Guosong & Wu, Xinrong & Gao, Zhigang & Dan, Bo, 2024. "Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN," Energy, Elsevier, vol. 299(C).
    3. Anant Oonsivilai & Banyat Boribun & Padej Pao-la-or, 2023. "Integration of Distributed Generation and Plug-in Electric Vehicles on Power Distribution System by Using Queuing Theory," Energies, MDPI, vol. 16(7), pages 1-15, March.
    4. Yu, Enbo & Xu, Guoji & Han, Yan & Li, Yongle, 2022. "An efficient short-term wind speed prediction model based on cross-channel data integration and attention mechanisms," Energy, Elsevier, vol. 256(C).
    5. Wei Sun & Qi Gao, 2019. "Short-Term Wind Speed Prediction Based on Variational Mode Decomposition and Linear–Nonlinear Combination Optimization Model," Energies, MDPI, vol. 12(12), pages 1-27, June.
    6. Guangyu Qin & Qingyou Yan & Jingyao Zhu & Chuanbo Xu & Daniel M. Kammen, 2021. "Day-Ahead Wind Power Forecasting Based on Wind Load Data Using Hybrid Optimization Algorithm," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    7. Wang, Bingqing & Li, Yongping & Huang, Guohe & Gao, Pangpang & Liu, Jing & Wen, Yizhuo, 2023. "Development of an integrated BLSVM-MFA method for analyzing renewable power-generation potential under climate change: A case study of Xiamen," Applied Energy, Elsevier, vol. 337(C).
    8. Neeraj Bokde & Andrés Feijóo & Nadhir Al-Ansari & Siyu Tao & Zaher Mundher Yaseen, 2020. "The Hybridization of Ensemble Empirical Mode Decomposition with Forecasting Models: Application of Short-Term Wind Speed and Power Modeling," Energies, MDPI, vol. 13(7), pages 1-23, April.
    9. Meng, Anbo & Chen, Shun & Ou, Zuhong & Ding, Weifeng & Zhou, Huaming & Fan, Jingmin & Yin, Hao, 2022. "A hybrid deep learning architecture for wind power prediction based on bi-attention mechanism and crisscross optimization," Energy, Elsevier, vol. 238(PB).
    10. Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Yuanzhuo Du & Kun Zhang & Qianzhi Shao & Zhe Chen, 2023. "A Short-Term Prediction Model of Wind Power with Outliers: An Integration of Long Short-Term Memory, Ensemble Empirical Mode Decomposition, and Sample Entropy," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
    12. Guoqing An & Ziyao Jiang & Libo Chen & Xin Cao & Zheng Li & Yuyang Zhao & Hexu Sun, 2021. "Ultra Short-Term Wind Power Forecasting Based on Sparrow Search Algorithm Optimization Deep Extreme Learning Machine," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    13. Guangqi Liang & Dongxiao Niu & Yi Liang, 2020. "Core Competitiveness Evaluation of Clean Energy Incubators Based on Matter-Element Extension Combined with TOPSIS and KPCA-NSGA-II-LSSVM," Sustainability, MDPI, vol. 12(22), pages 1-26, November.
    14. Chao-Ming Huang & Shin-Ju Chen & Sung-Pei Yang & Hsin-Jen Chen, 2023. "One-Day-Ahead Hourly Wind Power Forecasting Using Optimized Ensemble Prediction Methods," Energies, MDPI, vol. 16(6), pages 1-22, March.
    15. Wenlong Fu & Kai Wang & Jianzhong Zhou & Yanhe Xu & Jiawen Tan & Tie Chen, 2019. "A Hybrid Approach for Multi-Step Wind Speed Forecasting Based on Multi-Scale Dominant Ingredient Chaotic Analysis, KELM and Synchronous Optimization Strategy," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    16. Li, Guohui & Yin, Shibo & Yang, Hong, 2022. "A novel crude oil prices forecasting model based on secondary decomposition," Energy, Elsevier, vol. 257(C).
    17. Wen-Chang Tsai & Chih-Ming Hong & Chia-Sheng Tu & Whei-Min Lin & Chiung-Hsing Chen, 2023. "A Review of Modern Wind Power Generation Forecasting Technologies," Sustainability, MDPI, vol. 15(14), pages 1-40, July.
    18. Lin Wang & Fangqing Zhang & Jiefei Wang & Gang Ren & Dengxian Wang & Ling Gao & Xingyu Ming, 2024. "Fault Diagnosis Method for Hydropower Station Measurement and Control System Based on ISSA-VMD and 1DCNN-BiLSTM," Energies, MDPI, vol. 17(22), pages 1-25, November.
    19. Guillermo Alonso & Ricardo F. Alonso & Antonio Carlos Zambroni Zambroni De Souza & Walmir Freitas, 2022. "Enhanced Artificial Immune Systems and Fuzzy Logic for Active Distribution Systems Reconfiguration," Energies, MDPI, vol. 15(24), pages 1-18, December.
    20. Fu, Wenlong & Zhang, Kai & Wang, Kai & Wen, Bin & Fang, Ping & Zou, Feng, 2021. "A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM," Renewable Energy, Elsevier, vol. 164(C), pages 211-229.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3462-:d:1692282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.