IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p776-d1030181.html
   My bibliography  Save this article

Impact of Superconducting Cables on a DC Railway Network

Author

Listed:
  • Ghazi Hajiri

    (Université de Lorraine, GREEN, F-54000 Nancy, France
    These authors contributed equally to this work.)

  • Kévin Berger

    (Université de Lorraine, GREEN, F-54000 Nancy, France
    These authors contributed equally to this work.)

  • Frederic Trillaud

    (Instituto de Ingeniería, Universidad Nacional Autónoma de México, Mexico City 04350, Mexico
    These authors contributed equally to this work.)

  • Jean Lévêque

    (Université de Lorraine, GREEN, F-54000 Nancy, France)

  • Hervé Caron

    (Département de la Traction Électrique, SNCF Réseau, F-93418 La Plaine Saint-Denis, France)

Abstract

The Société Nationale des Chemins de fer Français (SNCF) is facing a significant challenge to meet the growth in rail traffic while maintaining continuous service, particularly in densely populated areas such as Paris. To tackle this challenge, the SNCF has implemented several electrification projects. These projects aim to reduce line losses and decrease voltage drops on the railway network. Amongst the possible technological choices, high temperature superconductor (HTS) cables have been evaluated, since they offer greater energy density at lower electrical losses than conventional cables. This feature is advantageous in order to transmit more electrical energy at a lesser footprint than conventional cable, therefore avoiding costly modifications of the existing infrastructures. In the present work, the electromagnetic response of two HTS cables topologies, unipolar and bipolar, was analyzed, and their impact on a direct current (DC) railway network under load was assessed. A commercial finite element (FE) software, COMSOL Multiphysics, was used to carry out a detailed FE model that accounts for the non-linearity of the electrical resistivity ρ ( J , B , θ ) of the superconducting cable. This FE model was coupled with a lumped-parameter circuit model of the railway network, which is particularly suited for transient simulations considering train motion. Based on a case study representing a portion of the Parisian railway network, it was found that the insertion of a superconducting cable can result in a reduction of electrical losses by 60% compared to conventional cable as well as an 8.6% reduction in the total electrical consumption of the traction network.

Suggested Citation

  • Ghazi Hajiri & Kévin Berger & Frederic Trillaud & Jean Lévêque & Hervé Caron, 2023. "Impact of Superconducting Cables on a DC Railway Network," Energies, MDPI, vol. 16(2), pages 1-33, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:776-:d:1030181
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/776/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/776/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christophe Mimeur & François Queyroi & Arnaud Banos & Thomas Thévenin, 2018. "Revisiting the structuring effect of transportation infrastructure: An empirical approach with the French railway network from 1860 to 1910," Historical Methods: A Journal of Quantitative and Interdisciplinary History, Taylor & Francis Journals, vol. 51(2), pages 65-81, April.
    2. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
    3. Tomita, Masaru & Fukumoto, Yusuke & Ishihara, Atsushi & Suzuki, Kenji & Akasaka, Tomoyuki & Kobayashi, Yusuke & Onji, Taiki & Arai, Yuki, 2020. "Energy analysis of superconducting power transmission installed on the commercial railway line," Energy, Elsevier, vol. 209(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomita, Masaru & Fukumoto, Yusuke & Ishihara, Atsushi & Kobayashi, Yusuke & Akasaka, Tomoyuki & Suzuki, Kenji & Onji, Taiki, 2023. "Superconducting DC power transmission for subway lines that can reduce electric resistance and save energy," Energy, Elsevier, vol. 281(C).
    2. Philippe Thalmann & Marc Vielle, 2019. "Lowering CO2 emissions in the Swiss transport sector," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-12, December.
    3. Ye, Hui & Wu, Fei & Yan, Tiantian & Li, Zexuan & Zheng, Zhengnan & Zhou, Dequn & Wang, Qunwei, 2024. "Decarbonizing urban passenger transportation: Policy effectiveness and interactions," Energy, Elsevier, vol. 311(C).
    4. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    5. Bosetti, Valentina & Longden, Thomas, 2013. "Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles," Energy Policy, Elsevier, vol. 58(C), pages 209-219.
    6. Paul Wolfram & Qingshi Tu & Niko Heeren & Stefan Pauliuk & Edgar G. Hertwich, 2021. "Material efficiency and climate change mitigation of passenger vehicles," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 494-510, April.
    7. Georgios Tsiachtsiras & Deyun Yin & Ernest Miguelez & Rosina Moreno, 2022. ""Trains of Thought: High-Speed Rail and Innovation in China"," IREA Working Papers 202220, University of Barcelona, Research Institute of Applied Economics, revised Nov 2022.
    8. Victor Gay, 2021. "Mapping the Third Republic: A Geographic Information System of France (1870–1940)," Historical Methods: A Journal of Quantitative and Interdisciplinary History, Taylor & Francis Journals, vol. 54(4), pages 189-207, November.
    9. Shicheng Li & Jian Gong & Qinghai Deng & Tianyu Zhou, 2018. "Impacts of the Qinghai–Tibet Railway on Accessibility and Economic Linkage of the Third Pole," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
    10. Arne Höltl & Cathy Macharis & Klaas De Brucker, 2017. "Pathways to Decarbonise the European Car Fleet: A Scenario Analysis Using the Backcasting Approach," Energies, MDPI, vol. 11(1), pages 1-20, December.
    11. Aijun Liu & Qiuyun Zhu & Xiaohui Ji & Hui Lu & Sang-Bing Tsai, 2018. "Novel Method for Perceiving Key Requirements of Customer Collaboration Low-Carbon Product Design," IJERPH, MDPI, vol. 15(7), pages 1-32, July.
    12. Cai, Yongxia & Woollacott, Jared & Beach, Robert H. & Rafelski, Lauren E. & Ramig, Christopher & Shelby, Michael, 2023. "Insights from adding transportation sector detail into an economy-wide model: The case of the ADAGE CGE model," Energy Economics, Elsevier, vol. 123(C).
    13. Ebiyon Idundun & Andrew S. Hursthouse & Iain McLellan, 2021. "Carbon Management in UK Higher Education Institutions: An Overview," Sustainability, MDPI, vol. 13(19), pages 1-16, September.
    14. Zhang, Runsen & Zhang, Junyi, 2021. "Long-term pathways to deep decarbonization of the transport sector in the post-COVID world," Transport Policy, Elsevier, vol. 110(C), pages 28-36.
    15. Dedinec, Aleksandar & Taseska-Gjorgievska, Verica & Markovska, Natasa & Obradovic Grncarovska, Teodora & Duic, Neven & Pop-Jordanov, Jordan & Taleski, Rubin, 2016. "Towards post-2020 climate change regime: Analyses of various mitigation scenarios and contributions for Macedonia," Energy, Elsevier, vol. 94(C), pages 124-137.
    16. Masanobu Kii, 2020. "Reductions in CO 2 Emissions from Passenger Cars under Demography and Technology Scenarios in Japan by 2050," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    17. Decker, Maximilian & Schorn, Felix & Samsun, Remzi Can & Peters, Ralf & Stolten, Detlef, 2019. "Off-grid power-to-fuel systems for a market launch scenario – A techno-economic assessment," Applied Energy, Elsevier, vol. 250(C), pages 1099-1109.
    18. Ajanovic, Amela & Haas, Reinhard, 2017. "The impact of energy policies in scenarios on GHG emission reduction in passenger car mobility in the EU-15," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1088-1096.
    19. Na Su & Zhenbo Wang, 2022. "Visual Analysis of Global Carbon Mitigation Research Based on Scientific Knowledge Graphs," IJERPH, MDPI, vol. 19(9), pages 1-15, May.
    20. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:776-:d:1030181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.