IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6942-d1253275.html
   My bibliography  Save this article

Influence of Fluidised Bed Inventory on the Performance of Limestone Sorbent in Calcium Looping for Thermochemical Energy Storage

Author

Listed:
  • Francesca Di Lauro

    (Dipartimento di Scienze Chimiche, Complesso Universitario di Monte Sant’Angelo, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy
    Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy)

  • Claudio Tregambi

    (Dipartimento di Ingegneria, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento, Italy
    Istituto di Scienze e Tecnologie per L’Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Piazzale Tecchio 80, 80125 Napoli, Italy)

  • Fabio Montagnaro

    (Dipartimento di Scienze Chimiche, Complesso Universitario di Monte Sant’Angelo, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy)

  • Laura Molignano

    (Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy)

  • Piero Salatino

    (Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy)

  • Roberto Solimene

    (Istituto di Scienze e Tecnologie per L’Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Piazzale Tecchio 80, 80125 Napoli, Italy)

Abstract

This research work deals with the application of the calcium looping concept for thermochemical energy storage. Experiments were carried out in a lab-scale fluidised bed reactor, which was electrically heated. An Italian limestone (98.5% CaCO 3 , 420–590 μm) was present in the bed alone, or in combination with silica sand/silicon carbide (this last material was chosen as per its high absorption capacity in the solar spectrum). Calcium looping tests (20 calcination/carbonation cycles) were carried out under operating conditions resembling the “closed-loop” scheme (calcination at 950 °C, carbonation at 850 °C, fluidising atmosphere composed of pure CO 2 in both cases). Carbonation degree, particle size distribution, and particle bulk density were measured as cycles progressed, together with the application of a model equation to relate carbonation degree to the number of cycles. Mutual relationships between the nature of the bed material and possible interactions, the degree of CaO carbonation, the generation of fragments, and changes in particle density and porosity are critically discussed. An investigation of the segregation behaviour of the bed material has been carried out through tests in a devoted fluidisation column, equipped with a needle-type capacitive probe (to measure solid concentration).

Suggested Citation

  • Francesca Di Lauro & Claudio Tregambi & Fabio Montagnaro & Laura Molignano & Piero Salatino & Roberto Solimene, 2023. "Influence of Fluidised Bed Inventory on the Performance of Limestone Sorbent in Calcium Looping for Thermochemical Energy Storage," Energies, MDPI, vol. 16(19), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6942-:d:1253275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6942/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6942/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pascual, S. & Lisbona, P. & Bailera, M. & Romeo, L.M., 2021. "Design and operational performance maps of calcium looping thermochemical energy storage for concentrating solar power plants," Energy, Elsevier, vol. 220(C).
    2. Yang, Ning & Zhou, Yunlong & Ge, Xinzhe, 2019. "A flexible CO2 capture operation scheme design and evaluation of a coal-fired power plant integrated with a novel DCP and retrofitted solar system," Energy, Elsevier, vol. 170(C), pages 73-84.
    3. Han, Rui & Xing, Shuang & Wu, Xueqian & Pang, Caihong & Lu, Shuangchun & Su, Yun & Liu, Qingling & Song, Chunfeng & Gao, Jihui, 2022. "Relevant influence of alkali carbonate doping on the thermochemical energy storage of Ca-based natural minerals during CaO/CaCO3 cycles," Renewable Energy, Elsevier, vol. 181(C), pages 267-277.
    4. Antzara, Andy & Heracleous, Eleni & Lemonidou, Angeliki A., 2015. "Improving the stability of synthetic CaO-based CO2 sorbents by structural promoters," Applied Energy, Elsevier, vol. 156(C), pages 331-343.
    5. Baigorri, Javier & Zaversky, Fritz & Astrain, David, 2023. "Massive grid-scale energy storage for next-generation concentrated solar power: A review of the potential emerging concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    6. Zheng, Hangbin & Liu, Xianglei & Xuan, Yimin & Song, Chao & Liu, Dachuan & Zhu, Qibin & Zhu, Zhonghui & Gao, Ke & Li, Yongliang & Ding, Yulong, 2021. "Thermochemical heat storage performances of fluidized black CaCO3 pellets under direct concentrated solar irradiation," Renewable Energy, Elsevier, vol. 178(C), pages 1353-1369.
    7. Kelly Atkinson & Robin Hughes & Arturo Macchi, 2023. "Application of the Calcium Looping Process for Thermochemical Storage of Variable Energy," Energies, MDPI, vol. 16(7), pages 1-19, April.
    8. Xu, T.X. & Tian, X.K. & Khosa, A.A. & Yan, J. & Ye, Q. & Zhao, C.Y., 2021. "Reaction performance of CaCO3/CaO thermochemical energy storage with TiO2 dopant and experimental study in a fixed-bed reactor," Energy, Elsevier, vol. 236(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Pascual & Claudio Tregambi & Francesca Di Lauro & Roberto Solimene & Piero Salatino & Fabio Montagnaro & Luis M. Romeo & Pilar Lisbona, 2024. "Partial Separation of Carbonated Material to Improve the Efficiency of Calcium Looping for the Thermochemical Storage of Solar Energy," Energies, MDPI, vol. 17(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Pascual & Claudio Tregambi & Francesca Di Lauro & Roberto Solimene & Piero Salatino & Fabio Montagnaro & Luis M. Romeo & Pilar Lisbona, 2024. "Partial Separation of Carbonated Material to Improve the Efficiency of Calcium Looping for the Thermochemical Storage of Solar Energy," Energies, MDPI, vol. 17(6), pages 1-16, March.
    2. Chen, Xiaoyi & Dong, Zhenbiao & Zhu, Liujuan & Ling, Xiang, 2023. "Mass transfer performance inside Ca-based thermochemical energy storage materials under different operating conditions," Renewable Energy, Elsevier, vol. 205(C), pages 340-348.
    3. Ying Yang & Yingjie Li & Xianyao Yan & Jianli Zhao & Chunxiao Zhang, 2021. "Development of Thermochemical Heat Storage Based on CaO/CaCO 3 Cycles: A Review," Energies, MDPI, vol. 14(20), pages 1-26, October.
    4. Ning Yang & Fu Kang & Zhenyu Liu & Xinzhe Ge & Yunlong Zhou, 2022. "An integrated CCU-plant scheme and assessment for conversion of captured CO2 into methanol [Novel process technologies for conversion of carbon dioxide from industrial flue gas streams into methano," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 550-562.
    5. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    6. Vyacheslav V. Rodaev & Svetlana S. Razlivalova, 2021. "Performance and Durability of the Zr-Doped CaO Sorbent under Cyclic Carbonation–Decarbonation at Different Operating Parameters," Energies, MDPI, vol. 14(16), pages 1-9, August.
    7. Han, Rui & Gao, Jihui & Wei, Siyu & Su, Yanlin & Sun, Fei & Zhao, Guangbo & Qin, Yukun, 2018. "Strongly coupled calcium carbonate/antioxidative graphite nanosheets composites with high cycling stability for thermochemical energy storage," Applied Energy, Elsevier, vol. 231(C), pages 412-422.
    8. Akbari-Emadabadi, S. & Rahimpour, M.R. & Hafizi, A. & Keshavarz, P., 2017. "Production of hydrogen-rich syngas using Zr modified Ca-Co bifunctional catalyst-sorbent in chemical looping steam methane reforming," Applied Energy, Elsevier, vol. 206(C), pages 51-62.
    9. Alberto Maria Gambelli, 2023. "CCUS Strategies as Most Viable Option for Global Warming Mitigation," Energies, MDPI, vol. 16(10), pages 1-4, May.
    10. Zhang, Yong & Hu, Mingke & Chen, Ziwei & Su, Yuehong & Riffat, Saffa, 2023. "Modelling analysis of a solar-driven thermochemical energy storage unit combined with heat recovery," Renewable Energy, Elsevier, vol. 206(C), pages 722-737.
    11. Selvan Bellan & Tatsuya Kodama & Nobuyuki Gokon & Koji Matsubara, 2022. "A review on high‐temperature thermochemical heat storage: Particle reactors and materials based on solid–gas reactions," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(5), September.
    12. Zhang, Wan & Li, Yingjie & He, Zirui & Ma, Xiaotong & Song, Haiping, 2017. "CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions," Applied Energy, Elsevier, vol. 206(C), pages 869-878.
    13. Rubens C. Toledo & Gretta L. A. F. Arce & João A. Carvalho & Ivonete Ávila, 2023. "Experimental Development of Calcium Looping Carbon Capture Processes: An Overview of Opportunities and Challenges," Energies, MDPI, vol. 16(9), pages 1-27, April.
    14. Wang, Chengcheng & Yang, Hui & Tong, Lige & Nie, Binjian & Zou, Boyang & Guo, Wei & Wang, Li & Ding, Yulong, 2023. "Numerical investigation of a shell-and-tube thermochemical reactor with thermal bridges: Structurale optimization and performance evaluation," Renewable Energy, Elsevier, vol. 206(C), pages 1212-1227.
    15. Li, J.B. & Wang, P. & Liu, D.Y., 2022. "Optimization on the gradually varied pore structure distribution for the irradiated absorber," Energy, Elsevier, vol. 240(C).
    16. Jing, Jie-ying & Zhang, Xue-wei & Li, Qing & Li, Ting-yu & Li, Wen-ying, 2018. "Self-activation of CaO/Ca3Al2O6 sorbents by thermally pretreated in CO2 atmosphere," Applied Energy, Elsevier, vol. 220(C), pages 419-425.
    17. Huang, Qian & Xu, Jiuping, 2020. "Bi-level multi-objective programming approach for carbon emission quota allocation towards co-combustion of coal and sewage sludge," Energy, Elsevier, vol. 211(C).
    18. Wang, Ke & Hu, Xiumeng & Zhao, Pengfei & Yin, Zeguang, 2016. "Natural dolomite modified with carbon coating for cyclic high-temperature CO2 capture," Applied Energy, Elsevier, vol. 165(C), pages 14-21.
    19. Ma, Xiaotong & Li, Yingjie & Shi, Lei & He, Zirui & Wang, Zeyan, 2016. "Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by by-product of biodiesel during calcium looping process," Applied Energy, Elsevier, vol. 168(C), pages 85-95.
    20. Jing, Jie-ying & Li, Ting-yu & Zhang, Xue-wei & Wang, Shi-dong & Feng, Jie & Turmel, William A. & Li, Wen-ying, 2017. "Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism," Applied Energy, Elsevier, vol. 199(C), pages 225-233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6942-:d:1253275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.