Partial Separation of Carbonated Material to Improve the Efficiency of Calcium Looping for the Thermochemical Storage of Solar Energy
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
- Chacartegui, R. & Alovisio, A. & Ortiz, C. & Valverde, J.M. & Verda, V. & Becerra, J.A., 2016. "Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle," Applied Energy, Elsevier, vol. 173(C), pages 589-605.
- Kelly Atkinson & Robin Hughes & Arturo Macchi, 2023. "Application of the Calcium Looping Process for Thermochemical Storage of Variable Energy," Energies, MDPI, vol. 16(7), pages 1-19, April.
- Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
- Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).
- Pascual, S. & Lisbona, P. & Bailera, M. & Romeo, L.M., 2021. "Design and operational performance maps of calcium looping thermochemical energy storage for concentrating solar power plants," Energy, Elsevier, vol. 220(C).
- Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
- Tesio, U. & Guelpa, E. & Verda, V., 2022. "Comparison of sCO2 and He Brayton cycles integration in a Calcium-Looping for Concentrated Solar Power," Energy, Elsevier, vol. 247(C).
- Francesca Di Lauro & Claudio Tregambi & Fabio Montagnaro & Laura Molignano & Piero Salatino & Roberto Solimene, 2023. "Influence of Fluidised Bed Inventory on the Performance of Limestone Sorbent in Calcium Looping for Thermochemical Energy Storage," Energies, MDPI, vol. 16(19), pages 1-19, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sara Pascual & Pilar Lisbona & Luis M. Romeo, 2022. "Thermal Energy Storage in Concentrating Solar Power Plants: A Review of European and North American R&D Projects," Energies, MDPI, vol. 15(22), pages 1-32, November.
- Lisbona, Pilar & Bailera, Manuel & Hills, Thomas & Sceats, Mark & Díez, Luis I. & Romeo, Luis M., 2020. "Energy consumption minimization for a solar lime calciner operating in a concentrated solar power plant for thermal energy storage," Renewable Energy, Elsevier, vol. 156(C), pages 1019-1027.
- Naveed Hassan & Manickam Minakshi & Willey Yun Hsien Liew & Amun Amri & Zhong-Tao Jiang, 2023. "Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature," Energies, MDPI, vol. 16(12), pages 1-16, June.
- Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
- Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
- Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
- Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
- Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
- Lu, Yupeng & Xuan, Yimin & Teng, Liang & Liu, Jingrui & Wang, Busheng, 2024. "A cascaded thermochemical energy storage system enabling performance enhancement of concentrated solar power plants," Energy, Elsevier, vol. 288(C).
- Svitnič, Tibor & Sundmacher, Kai, 2022. "Renewable methanol production: Optimization-based design, scheduling and waste-heat utilization with the FluxMax approach," Applied Energy, Elsevier, vol. 326(C).
- He, Song & Zheng, Yawen & Zeng, Xuelan & Wang, Junyao & Gao, Lifan & Yang, Dongtai, 2024. "A novel Ca-Ni looping with carbonation heat thermochemical regeneration method for post-combustion CO2 capture: System integration, energy-saving mechanism, and performance sensitivity analysis," Energy, Elsevier, vol. 312(C).
- Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
- Evgenios Karasavvas & Athanasios Scaltsoyiannes & Andy Antzaras & Kyriakos Fotiadis & Kyriakos Panopoulos & Angeliki Lemonidou & Spyros Voutetakis & Simira Papadopoulou, 2020. "One-Dimensional Heterogeneous Reaction Model of a Drop-Tube Carbonator Reactor for Thermochemical Energy Storage Applications," Energies, MDPI, vol. 13(22), pages 1-24, November.
- Palacios, A. & Barreneche, C. & Navarro, M.E. & Ding, Y., 2020. "Thermal energy storage technologies for concentrated solar power – A review from a materials perspective," Renewable Energy, Elsevier, vol. 156(C), pages 1244-1265.
- Marín, P.E. & Milian, Y. & Ushak, S. & Cabeza, L.F. & Grágeda, M. & Shire, G.S.F., 2021. "Lithium compounds for thermochemical energy storage: A state-of-the-art review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Tesio, U. & Guelpa, E. & Verda, V., 2022. "Comparison of sCO2 and He Brayton cycles integration in a Calcium-Looping for Concentrated Solar Power," Energy, Elsevier, vol. 247(C).
- Li, Shouzhuang & Tregambi, Claudio & Di Lauro, Francesca & Montagnaro, Fabio & Salatino, Piero & Järvinen, Mika & Solimene, Roberto, 2024. "Tailoring solar-assisted calcium looping for polyethylene terephthalate (PET) steam gasification: Combined effect of carbonation and calcination temperatures on process performance," Applied Energy, Elsevier, vol. 376(PB).
- Ying Yang & Yingjie Li & Xianyao Yan & Jianli Zhao & Chunxiao Zhang, 2021. "Development of Thermochemical Heat Storage Based on CaO/CaCO 3 Cycles: A Review," Energies, MDPI, vol. 14(20), pages 1-26, October.
More about this item
Keywords
calcium looping; thermochemical energy storage; concentrated solar power; segregation; carbonated solids;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1372-:d:1355971. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.