IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v185y2023ics1364032123004902.html
   My bibliography  Save this article

Massive grid-scale energy storage for next-generation concentrated solar power: A review of the potential emerging concepts

Author

Listed:
  • Baigorri, Javier
  • Zaversky, Fritz
  • Astrain, David

Abstract

The cost of renewable energy has significantly decreased in recent years, which marks the way towards a fully renewable and sustainable future. However, this energy transition is not possible without massive grid-scale energy storage technology since most of the renewable energies are highly variable. In areas with a high solar resource, Concentrated Solar Power (CSP) can play a crucial role, thus, significant advances are being made to increase its competitiveness through the improvement of the energy storage systems integrated with CSP. The present study provides a comprehensive review on the latest advances and challenges of the most promising energy storage strategies for the next-generation CSP plants, while also addressing the limitations of the state-of-the-art technology. This review includes a thorough analysis of the well-known emerging Thermal Energy Storage (TES) systems to harness solar energy, as well as excess electricity storage systems. The latter includes Power-To-Heat-To-Power (P2H2P) and Compressed/Liquefied Gas Energy Storage (CGES/LGES) technologies for storing low-value excess energy from other renewable energy technologies lacking feasible energy storage options. The study also explores their integration with advanced power blocks. A fair comparison has been conducted taking various factors into account: energy storage density, operating conditions, estimated costs, reliability, cyclic thermal/chemical stability, technical maturity, complexity and efficiency. Although no single technology can fulfill all the requirements simultaneously, the results present promising advances, serving to draw the outline of the future directions and prospects to boost the CSP sector in the upcoming decade.

Suggested Citation

  • Baigorri, Javier & Zaversky, Fritz & Astrain, David, 2023. "Massive grid-scale energy storage for next-generation concentrated solar power: A review of the potential emerging concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:rensus:v:185:y:2023:i:c:s1364032123004902
    DOI: 10.1016/j.rser.2023.113633
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123004902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xian, Lei & Chen, Lei & Tian, Heqing & Tao, Wen-Quan, 2022. "Enhanced thermal energy storage performance of molten salt for the next generation concentrated solar power plants by SiO2 nanoparticles: A molecular dynamics study," Applied Energy, Elsevier, vol. 323(C).
    2. Zaversky, Fritz & Les, Iñigo & Sorbet, Patxi & Sánchez, Marcelino & Valentin, Benoît & Brau, Jean-Florian & Siros, Frédéric, 2020. "The challenge of solar powered combined cycles – Providing dispatchability and increasing efficiency by integrating the open volumetric air receiver technology," Energy, Elsevier, vol. 194(C).
    3. Ewa C. E. Rönnebro & Greg Whyatt & Michael Powell & Matthew Westman & Feng (Richard) Zheng & Zhigang Zak Fang, 2015. "Metal Hydrides for High-Temperature Power Generation," Energies, MDPI, vol. 8(8), pages 1-25, August.
    4. Jacob, Rhys & Bruno, Frank, 2015. "Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 79-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodríguez-Iturriaga, Pablo & García, Víctor Manuel & Rodríguez-Bolívar, Salvador & Valdés, Enrique Ernesto & Anseán, David & López-Villanueva, Juan Antonio, 2024. "A coupled electrothermal lithium-ion battery reduced-order model including heat generation due to solid diffusion," Applied Energy, Elsevier, vol. 367(C).
    2. Francesca Di Lauro & Claudio Tregambi & Fabio Montagnaro & Laura Molignano & Piero Salatino & Roberto Solimene, 2023. "Influence of Fluidised Bed Inventory on the Performance of Limestone Sorbent in Calcium Looping for Thermochemical Energy Storage," Energies, MDPI, vol. 16(19), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    2. Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
    3. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials," Applied Energy, Elsevier, vol. 163(C), pages 1-8.
    4. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 170(C), pages 324-328.
    5. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Carballo, Jose Antonio & Carra, Maria Elena & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "CFD analysis of the performance impact of geometrical shape on volumetric absorbers in a standard cup," Renewable Energy, Elsevier, vol. 201(P1), pages 256-272.
    6. Liu, Jinjin & Xiao, Xin, 2023. "Molecular dynamics investigation of thermo-physical properties of molten salt with nanoparticles for solar energy application," Energy, Elsevier, vol. 282(C).
    7. Cong Zhou & Yizhen Li & Fenghao Wang & Zeyuan Wang & Qing Xia & Yuping Zhang & Jun Liu & Boyang Liu & Wanlong Cai, 2023. "A Review of the Performance Improvement Methods of Phase Change Materials: Application for the Heat Pump Heating System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    8. Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    9. Wu, Chunlei & Wang, Qing & Wang, Xinmin & Sun, Shipeng & Wang, Yuqi & Wu, Shuang & Bai, Jingru & Sheng, Hongyu & Zhang, Jinghui, 2024. "Al2O3 nanoparticles integration for comprehensive enhancement of eutectic salt thermal performance: Experimental design, molecular dynamics calculations, and system simulation studies," Energy, Elsevier, vol. 292(C).
    10. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    11. Yu, De-Hai & He, Zhi-Zhu, 2019. "Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management," Applied Energy, Elsevier, vol. 247(C), pages 503-516.
    12. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Craig M. Jensen & Etsuo Akiba & Hai-Wen Li, 2016. "Hydrides: Fundamentals and Applications," Energies, MDPI, vol. 9(4), pages 1-2, April.
    14. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    15. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    16. Zhang, Hanfei & Shin, Donghyun & Santhanagopalan, Sunand, 2019. "Microencapsulated binary carbonate salt mixture in silica shell with enhanced effective heat capacity for high temperature latent heat storage," Renewable Energy, Elsevier, vol. 134(C), pages 1156-1162.
    17. Ran, Fengming & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2020. "Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Zhu, F.Q. & Jiang, L. & Wang, L.W. & Wang, R.Z., 2016. "Experimental investigation on a MnCl2CaCl2NH3 resorption system for heat and refrigeration cogeneration," Applied Energy, Elsevier, vol. 181(C), pages 29-37.
    19. Kasper, Lukas & Pernsteiner, Dominik & Schirrer, Alexander & Jakubek, Stefan & Hofmann, René, 2023. "Experimental characterization, parameter identification and numerical sensitivity analysis of a novel hybrid sensible/latent thermal energy storage prototype for industrial retrofit applications," Applied Energy, Elsevier, vol. 344(C).
    20. Andrés Meana-Fernández & Juan M. González-Caballín & Roberto Martínez-Pérez & Francisco J. Rubio-Serrano & Antonio J. Gutiérrez-Trashorras, 2022. "Power Plant Cycles: Evolution towards More Sustainable and Environmentally Friendly Technologies," Energies, MDPI, vol. 15(23), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:185:y:2023:i:c:s1364032123004902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.