IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6808-d1247532.html
   My bibliography  Save this article

Cleaner Cooking with Charcoal in Kibera Informal Settlement in Nairobi, Kenya, and Its Implications for Livelihoods and the Environment

Author

Listed:
  • Moses Kirimi

    (Centre for International Forestry Research-World Agroforestry (CIFOR-ICRAF), Nairobi P.O. Box 30677-00100, Kenya
    Department of Earth and Climate Sciences, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya)

  • James K. Gitau

    (Centre for International Forestry Research-World Agroforestry (CIFOR-ICRAF), Nairobi P.O. Box 30677-00100, Kenya)

  • Ruth Mendum

    (Ag Sciences Global, College of Agricultural Sciences, The Pennsylvania State University, Agricultural Administration Building, University Park, State College, PA 16802, USA)

  • Catherine Muthuri

    (Centre for International Forestry Research-World Agroforestry (CIFOR-ICRAF), Nairobi P.O. Box 30677-00100, Kenya)

  • Mary Njenga

    (Centre for International Forestry Research-World Agroforestry (CIFOR-ICRAF), Nairobi P.O. Box 30677-00100, Kenya
    Wangari Maathai Institute for Peace and Environmental Studies, University of Nairobi, Nairobi P.O. Box 29053-00656, Kenya)

Abstract

Woodfuel that is unsustainably sourced and inefficiently used results in negative environmental and health impacts. This study assessed charcoal use and resultant concentrations of indoor air pollutants (IAP) in an urban informal settlement while cooking with a Jikokoa stove (an improved branded charcoal stove) and medium and small-sized artisanal Kenya Ceramic Jikos (KCJs). Fuel stacking was prevalent with charcoal and kerosene being used by 25% of the studied households. Cooking with a Jikokoa stove reduced charcoal consumption by 6.4% and 26% compared to small and medium-sized KCJs, respectively. The small-sized KCJ reduced charcoal consumption by 21% compared to the medium-sized KCJ. The Jikokoa stove reduced concentrations of carbon monoxide (CO) by 10% and 50% and fine particulate matter (PM 2.5 ) by 6% and 77% compared to small-sized and medium-sized KCJs, respectively. The Jikokoa stove reduced carbon dioxide (CO 2 ) concentrations by 15.6% compared to the medium-sized KCJ. The small-sized KCJ reduced CO and PM 2.5 concentrations by 45% and 75%, respectively, compared to the medium-sized KCJ. In summary, small-sized KCJs are more effective than medium-sized ones, and Jikokoa stoves more effective than small-sized KCJs, making it the stove of choice. The more efficient charcoal stoves are, the more charcoal consumption and IAP can be reduced, mitigating environmental degradation, climate change and health problems associated with smoke in the kitchen. There is need for participatory research to scale improved stoves and upgrade local practices as they are cheaper and already embedded in the cooking culture.

Suggested Citation

  • Moses Kirimi & James K. Gitau & Ruth Mendum & Catherine Muthuri & Mary Njenga, 2023. "Cleaner Cooking with Charcoal in Kibera Informal Settlement in Nairobi, Kenya, and Its Implications for Livelihoods and the Environment," Energies, MDPI, vol. 16(19), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6808-:d:1247532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6808/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6808/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shankar, Anita V. & Quinn, Ashlinn K. & Dickinson, Katherine L. & Williams, Kendra N. & Masera, Omar & Charron, Dana & Jack, Darby & Hyman, Jasmine & Pillarisetti, Ajay & Bailis, Rob & Kumar, Praveen , 2020. "Everybody stacks: Lessons from household energy case studies to inform design principles for clean energy transitions," Energy Policy, Elsevier, vol. 141(C).
    2. Bielecki, Christopher & Wingenbach, Gary, 2014. "Rethinking improved cookstove diffusion programs: A case study of social perceptions and cooking choices in rural Guatemala," Energy Policy, Elsevier, vol. 66(C), pages 350-358.
    3. Hyungkeun Kim & Kyungmo Kang & Taeyeon Kim, 2018. "Measurement of Particulate Matter (PM2.5) and Health Risk Assessment of Cooking-Generated Particles in the Kitchen and Living Rooms of Apartment Houses," Sustainability, MDPI, vol. 10(3), pages 1-13, March.
    4. Bailis, Rob & Cowan, Amanda & Berrueta, Victor & Masera, Omar, 2009. "Arresting the Killer in the Kitchen: The Promises and Pitfalls of Commercializing Improved Cookstoves," World Development, Elsevier, vol. 37(10), pages 1694-1705, October.
    5. Nelson Amowine & Zhiqiang Ma & Mingxing Li & Zhixiang Zhou & Benjamin Azembila Asunka & James Amowine, 2019. "Energy Efficiency Improvement Assessment in Africa: An Integrated Dynamic DEA Approach," Energies, MDPI, vol. 12(20), pages 1-17, October.
    6. Akpalu, Wisdom & Dasmani, Isaac & Aglobitse, Peter B., 2011. "Demand for cooking fuels in a developing country: To what extent do taste and preferences matter?," Energy Policy, Elsevier, vol. 39(10), pages 6525-6531, October.
    7. Ouedraogo, Nadia S., 2017. "Africa energy future: Alternative scenarios and their implications for sustainable development strategies," Energy Policy, Elsevier, vol. 106(C), pages 457-471.
    8. Hang Ren & Wei Guo & Zhenke Zhang & Leonard Musyoka Kisovi & Priyanko Das, 2020. "Population Density and Spatial Patterns of Informal Settlements in Nairobi, Kenya," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akakpo, K. & Fontodji, J.K. & Lare, Y. & Adam, R. & Kokutse, A.D. & Kokou, K., 2024. "Overview of bioenergy use and production in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    2. Ipsita Das & Leonard le Roux & Richard Mulwa & Remidius Ruhinduka & Marc Jeuland, 2024. "Urban demand for cooking fuels in two major African cities and implications for policy," PLOS Sustainability and Transformation, Public Library of Science, vol. 3(2), pages 1-21, February.
    3. Gebru, Bahre & Elofsson, Katarina, 2023. "The role of forest status in households’ fuel choice in Uganda," Energy Policy, Elsevier, vol. 173(C).
    4. Zhou, Lingfang & He, Weijun & Kong, Yang & Zhang, Zhiqiu, 2025. "Fuel upgrading in the kitchen: When cognition of biodiversity conservation and climate change facilitates household cooking energy transition in nine nature reserves and their adjacent regions," Energy, Elsevier, vol. 320(C).
    5. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2016. "Patterns and determinants of household use of fuels for cooking: Empirical evidence from sub-Saharan Africa," Energy, Elsevier, vol. 117(P1), pages 93-104.
    6. Lu, Hongwei & Li, Tingting & Li, Guojing & Luo, Qiyou & Gao, Mingjie, 2025. "Digital literacy and the rural cooking energy transition: Evidence from rural China," Energy Policy, Elsevier, vol. 198(C).
    7. Olabisi, Michael & Tschirley, David L. & Nyange, David & Awokuse, Titus, 2019. "Energy demand substitution from biomass to imported kerosene: Evidence from Tanzania," Energy Policy, Elsevier, vol. 130(C), pages 243-252.
    8. Muhammad Irfan & Michael P. Cameron & Gazi Hassan, 2017. "Household Energy Elasticities in Pakistan: An Application of the LA-AIDS Model on Pooled Household Data," Working Papers in Economics 17/11, University of Waikato.
    9. Khandelwal, Meena & Hill, Matthew E. & Greenough, Paul & Anthony, Jerry & Quill, Misha & Linderman, Marc & Udaykumar, H.S., 2017. "Why Have Improved Cook-Stove Initiatives in India Failed?," World Development, Elsevier, vol. 92(C), pages 13-27.
    10. Christophe Muller & Huijie Yan, 2018. "Household Fuel Use in Rural China," AMSE Working Papers 1808, Aix-Marseille School of Economics, France.
    11. Muller, Christophe & Yan, Huijie, 2018. "Household fuel use in developing countries: Review of theory and evidence," Energy Economics, Elsevier, vol. 70(C), pages 429-439.
    12. Adusah-Poku, Frank & Takeuchi, Kenji, 2019. "Household energy expenditure in Ghana: A double-hurdle model approach," World Development, Elsevier, vol. 117(C), pages 266-277.
    13. Alhassan A. Karakara & Evans S. Osabuohien, 2020. "Clean versus Dirty Energy: Empirical Evidence from Fuel Adoption and Usage by Households in Ghana," Working Papers 20/075, European Xtramile Centre of African Studies (EXCAS).
    14. Smith, Jo U. & Fischer, Anke & Hallett, Paul D. & Homans, Hilary Y. & Smith, Pete & Abdul-Salam, Yakubu & Emmerling, Hanna H. & Phimister, Euan, 2015. "Sustainable use of organic resources for bioenergy, food and water provision in rural Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 903-917.
    15. Husnain, Muhammad Iftikhar ul & Nasrullah, Nasrullah & Khan, Muhammad Aamir & Banerjee, Suvajit, 2021. "Scrutiny of income related drivers of energy poverty: A global perspective," Energy Policy, Elsevier, vol. 157(C).
    16. Aziz, Shakila & Barua, Suborna & Chowdhury, Shahriar Ahmed, 2022. "Cooking energy use in Bangladesh: Evidence from technology and fuel choice," Energy, Elsevier, vol. 250(C).
    17. Fateh Belaid & Christophe Rault, 2020. "Energy Expenditure in Egypt: Empirical Evidence Based on A Quantile Regression Approach," Working Papers 1446, Economic Research Forum, revised 20 Dec 2020.
    18. Boris K. O. Lokonon & Amy Faye & Alisher Mirzabaev, 2023. "Renewable energy adoption and rural livelihoods in Ethiopia," Natural Resources Forum, Blackwell Publishing, vol. 47(4), pages 724-746, November.
    19. Atteridge, Aaron & Weitz, Nina, 2017. "A political economy perspective on technology innovation in the Kenyan clean cookstove sector," Energy Policy, Elsevier, vol. 110(C), pages 303-312.
    20. Aditi Bhattacharyya & Daisy Das, 2016. "What Makes Rural Households Use Traditional Fuel? Empirical Evidence from India," Working Papers 1604, Sam Houston State University, Department of Economics and International Business.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6808-:d:1247532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.