IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6804-d1247292.html
   My bibliography  Save this article

Laboratory-Scale Airborne Wind Energy Conversion Emulator Using OPAL-RT Real-Time Simulator

Author

Listed:
  • Pankaj Kumar

    (Department of Electrical & Electronics Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India)

  • Yashwant Kashyap

    (Department of Electrical & Electronics Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India)

  • Roystan Vijay Castelino

    (Department of Electrical & Electronics Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India)

  • Anabalagan Karthikeyan

    (Department of Electrical & Electronics Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India)

  • Manjunatha Sharma K.

    (Department of Electrical & Electronics Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India)

  • Debabrata Karmakar

    (Department of Water Resources and Ocean Engineering National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India)

  • Panagiotis Kosmopoulos

    (Institute for Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), 15236 Athens, Greece)

Abstract

Airborne wind energy systems (AWES) are more efficient than traditional wind turbines because they can capture higher wind speeds at higher altitudes using connected kite generators. Securing a real wind turbine or a site with favorable wind conditions is not always an assured opportunity for conducting research. Hence, the Research and Development of the Laboratory Scale Airborne Wind Energy Conversion System (LAWECS) require a better understanding of airborne wind turbine dynamics and emulation. Therefore, an airborne wind turbine emulation system was designed, implemented, simulated, and experimentally tested with ground data for the real time simulation. The speed and torque of a permanent magnet synchronous motor (PMSM) connected to a kite are regulated to maximize wind energy harvesting. A field-oriented control technique is then used to control the PMSM’s torque, while a three-phase power inverter is utilized to drive the PMSM with PI controllers in a closed loop. The proposed framework was tested, and the emulated airborne wind energy conversion system results were proven experimentally for different wind speeds and generator loads. Further, the LAWECS emulator simulated a 2 kW, 20 kW, and 60 kW designed with a projected kite area of 5, 25, and 70 square meters, respectively. This system was simulated using the Matlab/Simulink software and tested with the experimental data. Furthermore, the evaluation of the proposed framework is validated using a real-time hardware-in-the-loop environment, which uses the FPGA-based OPAL-RT Simulator.

Suggested Citation

  • Pankaj Kumar & Yashwant Kashyap & Roystan Vijay Castelino & Anabalagan Karthikeyan & Manjunatha Sharma K. & Debabrata Karmakar & Panagiotis Kosmopoulos, 2023. "Laboratory-Scale Airborne Wind Energy Conversion Emulator Using OPAL-RT Real-Time Simulator," Energies, MDPI, vol. 16(19), pages 1-30, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6804-:d:1247292
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6804/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6804/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martinez, Fernando & Herrero, L. Carlos & de Pablo, Santiago, 2014. "Open loop wind turbine emulator," Renewable Energy, Elsevier, vol. 63(C), pages 212-221.
    2. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.
    4. GuangQing Bao & WuGang Qi & Ting He, 2020. "Direct Torque Control of PMSM with Modified Finite Set Model Predictive Control," Energies, MDPI, vol. 13(1), pages 1-16, January.
    5. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    6. Licitra, G. & Koenemann, J. & Bürger, A. & Williams, P. & Ruiterkamp, R. & Diehl, M., 2019. "Performance assessment of a rigid wing Airborne Wind Energy pumping system," Energy, Elsevier, vol. 173(C), pages 569-585.
    7. Cherubini, Antonello & Papini, Andrea & Vertechy, Rocco & Fontana, Marco, 2015. "Airborne Wind Energy Systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1461-1476.
    8. Cherubini, Antonello & Vertechy, Rocco & Fontana, Marco, 2016. "Simplified model of offshore Airborne Wind Energy Converters," Renewable Energy, Elsevier, vol. 88(C), pages 465-473.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenming Gong & Chaofan Liu & Mingdong Wang & Xiaobing Zhao, 2024. "Efficient Prototyping of a Field-Programmable Gate Array-Based Real-Time Model of a Modular Multilevel Converter," Energies, MDPI, vol. 17(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roystan Vijay Castelino & Pankaj Kumar & Yashwant Kashyap & Anabalagan Karthikeyan & Manjunatha Sharma K. & Debabrata Karmakar & Panagiotis Kosmopoulos, 2023. "Exploring the Potential of Kite-Based Wind Power Generation: An Emulation-Based Approach," Energies, MDPI, vol. 16(13), pages 1-22, July.
    2. Mostafa A. Rushdi & Ahmad A. Rushdi & Tarek N. Dief & Amr M. Halawa & Shigeo Yoshida & Roland Schmehl, 2020. "Power Prediction of Airborne Wind Energy Systems Using Multivariate Machine Learning," Energies, MDPI, vol. 13(9), pages 1-23, May.
    3. Salari, Mahdi Ebrahimi & Coleman, Joseph & Toal, Daniel, 2019. "Analysis of direct interconnection technique for offshore airborne wind energy systems under normal and fault conditions," Renewable Energy, Elsevier, vol. 131(C), pages 284-296.
    4. Jochem De Schutter & Rachel Leuthold & Thilo Bronnenmeyer & Elena Malz & Sebastien Gros & Moritz Diehl, 2023. "AWEbox : An Optimal Control Framework for Single- and Multi-Aircraft Airborne Wind Energy Systems," Energies, MDPI, vol. 16(4), pages 1-32, February.
    5. Ali Arshad Uppal & Manuel C. R. M. Fernandes & Sérgio Vinha & Fernando A. C. C. Fontes, 2021. "Cascade Control of the Ground Station Module of an Airborne Wind Energy System," Energies, MDPI, vol. 14(24), pages 1-25, December.
    6. Malz, E.C. & Hedenus, F. & Göransson, L. & Verendel, V. & Gros, S., 2020. "Drag-mode airborne wind energy vs. wind turbines: An analysis of power production, variability and geography," Energy, Elsevier, vol. 193(C).
    7. Helena Schmidt & Gerdien de Vries & Reint Jan Renes & Roland Schmehl, 2022. "The Social Acceptance of Airborne Wind Energy: A Literature Review," Energies, MDPI, vol. 15(4), pages 1-24, February.
    8. Trevisi, Filippo & McWilliam, Michael & Gaunaa, Mac, 2021. "Configuration optimization and global sensitivity analysis of Ground-Gen and Fly-Gen Airborne Wind Energy Systems," Renewable Energy, Elsevier, vol. 178(C), pages 385-402.
    9. André F. C. Pereira & João M. M. Sousa, 2022. "A Review on Crosswind Airborne Wind Energy Systems: Key Factors for a Design Choice," Energies, MDPI, vol. 16(1), pages 1-40, December.
    10. Bauer, Florian & Kennel, Ralph M. & Hackl, Christoph M. & Campagnolo, Filippo & Patt, Michael & Schmehl, Roland, 2018. "Drag power kite with very high lift coefficient," Renewable Energy, Elsevier, vol. 118(C), pages 290-305.
    11. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    12. Johannes Alexander Müller & Mostafa Yasser Mostafa Khalil Elhashash & Volker Gollnick, 2022. "Electrical Launch Catapult and Landing Decelerator for Fixed-Wing Airborne Wind Energy Systems," Energies, MDPI, vol. 15(7), pages 1-19, March.
    13. Castelló, Jaime & Espí, José M. & García-Gil, Rafael, 2016. "Development details and performance assessment of a Wind Turbine Emulator," Renewable Energy, Elsevier, vol. 86(C), pages 848-857.
    14. Omar Sandre Hernandez & Jorge S. Cervantes-Rojas & Jesus P. Ordaz Oliver & Carlos Cuvas Castillo, 2021. "Stator Fixed Deadbeat Predictive Torque and Flux Control of a PMSM Drive with Modulated Duty Cycle," Energies, MDPI, vol. 14(10), pages 1-15, May.
    15. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    16. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    17. Marques, António Cardoso & Fuinhas, José Alberto & Menegaki, Angeliki N., 2014. "Interactions between electricity generation sources and economic activity in Greece: A VECM approach," Applied Energy, Elsevier, vol. 132(C), pages 34-46.
    18. Karol Wróbel & Piotr Serkies & Krzysztof Szabat, 2020. "Model Predictive Base Direct Speed Control of Induction Motor Drive—Continuous and Finite Set Approaches," Energies, MDPI, vol. 13(5), pages 1-15, March.
    19. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    20. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6804-:d:1247292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.