IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5077-d1184055.html
   My bibliography  Save this article

A Method of Assessing the Selection of Carport Power for an Electric Vehicle Using the Metalog Probability Distribution Family

Author

Listed:
  • Arkadiusz Małek

    (Department of Transportation and Informatics, WSEI University in Lublin, Projektowa 4, 20-209 Lublin, Poland)

  • Jacek Caban

    (Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland)

  • Agnieszka Dudziak

    (Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland)

  • Andrzej Marciniak

    (Department of Transportation and Informatics, WSEI University in Lublin, Projektowa 4, 20-209 Lublin, Poland)

  • Piotr Ignaciuk

    (Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland)

Abstract

This article presents a method for assessing the selection of carport power for an electric vehicle using the Metalog probability distribution family. Carports are used to generate electricity and provide shade for vehicles parked underneath them. On the roof of the carport, there is a photovoltaic system consisting of photovoltaic panels and an inverter. An inverter with Internet of Things functions generates data packets which describe the operation of the entire system at certain intervals and sends them via wireless transmission to a cloud server. The transmitted data can be processed offline and used to determine the charging capacity of individual electric vehicles. This article presents the use of the Metalog family of distributions to predict the production of electricity by a photovoltaic carport with the accuracy of the probability distribution. Based on the calculations, an electric vehicle was selected that can be charged from the carport.

Suggested Citation

  • Arkadiusz Małek & Jacek Caban & Agnieszka Dudziak & Andrzej Marciniak & Piotr Ignaciuk, 2023. "A Method of Assessing the Selection of Carport Power for an Electric Vehicle Using the Metalog Probability Distribution Family," Energies, MDPI, vol. 16(13), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5077-:d:1184055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edgar Sokolovskij & Arkadiusz Małek & Jacek Caban & Agnieszka Dudziak & Jonas Matijošius & Andrzej Marciniak, 2023. "Selection of a Photovoltaic Carport Power for an Electric Vehicle," Energies, MDPI, vol. 16(7), pages 1-16, March.
    2. Du, Jiuyu & Liu, Ye & Mo, Xinying & Li, Yalun & Li, Jianqiu & Wu, Xiaogang & Ouyang, Minggao, 2019. "Impact of high-power charging on the durability and safety of lithium batteries used in long-range battery electric vehicles," Applied Energy, Elsevier, vol. 255(C).
    3. Andrea Pietra & Marco Gianni & Nicola Zuliani & Stefano Malabotti & Rodolfo Taccani, 2021. "Experimental Characterization of an Alkaline Electrolyser and a Compression System for Hydrogen Production and Storage," Energies, MDPI, vol. 14(17), pages 1-17, August.
    4. Globisch, Joachim & Plötz, Patrick & Dütschke, Elisabeth & Wietschel, Martin, 2019. "Consumer preferences for public charging infrastructure for electric vehicles," Transport Policy, Elsevier, vol. 81(C), pages 54-63.
    5. Schücking, Maximilian & Jochem, Patrick, 2021. "Two-stage stochastic program optimizing the cost of electric vehicles in commercial fleets," Applied Energy, Elsevier, vol. 293(C).
    6. Muhammad Rizalul Wahid & Bentang Arief Budiman & Endra Joelianto & Muhammad Aziz, 2021. "A Review on Drive Train Technologies for Passenger Electric Vehicles," Energies, MDPI, vol. 14(20), pages 1-24, October.
    7. Krzysztof Górski & Ruslans Smigins & Jonas Matijošius & Alfredas Rimkus & Rafał Longwic, 2022. "Physicochemical Properties of Diethyl Ether—Sunflower Oil Blends and Their Impact on Diesel Engine Emissions," Energies, MDPI, vol. 15(11), pages 1-18, June.
    8. Jonas Matijošius & Olga Orynycz & Sergii Kovbasenko & Vitalii Simonenko & Yevheniy Shuba & Valentyn Moroz & Serhiy Gutarevych & Andrzej Wasiak & Karol Tucki, 2022. "Testing the Indicators of Diesel Vehicles Operating on Diesel Oil and Diesel Biofuel," Energies, MDPI, vol. 15(24), pages 1-10, December.
    9. Arkadiusz Małek & Agnieszka Dudziak & Ondrej Stopka & Jacek Caban & Andrzej Marciniak & Iwona Rybicka, 2022. "Charging Electric Vehicles from Photovoltaic Systems—Statistical Analyses of the Small Photovoltaic Farm Operation," Energies, MDPI, vol. 15(6), pages 1-18, March.
    10. Ibrahim, Amier & Jiang, Fangming, 2021. "The electric vehicle energy management: An overview of the energy system and related modeling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Alwesabi, Yaseen & Liu, Zhaocai & Kwon, Soongeol & Wang, Yong, 2021. "A novel integration of scheduling and dynamic wireless charging planning models of battery electric buses," Energy, Elsevier, vol. 230(C).
    12. Kristián Čulík & Vladimíra Štefancová & Karol Hrudkay & Ján Morgoš, 2021. "Interior Heating and Its Influence on Electric Bus Consumption," Energies, MDPI, vol. 14(24), pages 1-19, December.
    13. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2019. "Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics," Applied Energy, Elsevier, vol. 242(C), pages 769-781.
    14. Di Foggia, Giacomo, 2021. "Drivers and challenges of electric vehicles integration in corporate fleet: An empirical survey," SocArXiv b3e56, Center for Open Science.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Caban & Arkadiusz Małek & Branislav Šarkan, 2024. "Strategic Model for Charging a Fleet of Electric Vehicles with Energy from Renewable Energy Sources," Energies, MDPI, vol. 17(5), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edgar Sokolovskij & Arkadiusz Małek & Jacek Caban & Agnieszka Dudziak & Jonas Matijošius & Andrzej Marciniak, 2023. "Selection of a Photovoltaic Carport Power for an Electric Vehicle," Energies, MDPI, vol. 16(7), pages 1-16, March.
    2. Jacek Caban & Arkadiusz Małek & Branislav Šarkan, 2024. "Strategic Model for Charging a Fleet of Electric Vehicles with Energy from Renewable Energy Sources," Energies, MDPI, vol. 17(5), pages 1-17, March.
    3. Liu, Wei & Chau, K.T. & Tian, Xiaoyang & Wang, Hui & Hua, Zhichao, 2023. "Smart wireless power transfer — opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    4. Gao, Bingzhao & Meng, Dele & Shi, Wentong & Cai, Wenqi & Dong, Shiying & Zhang, Yuanjian & Chen, Hong, 2022. "Topology optimization and the evolution trends of two-speed transmission of EVs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Wang, Yuanyuan & Chi, Yuanying & Xu, Jin-Hua & Yuan, Yongke, 2022. "Consumers’ attitudes and their effects on electric vehicle sales and charging infrastructure construction: An empirical study in China," Energy Policy, Elsevier, vol. 165(C).
    6. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    7. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    8. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    9. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    10. Huang, Xingjun & Lin, Yun & Lim, Ming K. & Zhou, Fuli & Liu, Feng, 2022. "Electric vehicle charging station diffusion: An agent-based evolutionary game model in complex networks," Energy, Elsevier, vol. 257(C).
    11. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    12. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    13. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    14. Arkadiusz Kampczyk & Wojciech Gamon & Katarzyna Gawlak, 2023. "Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics," Energies, MDPI, vol. 16(6), pages 1-23, March.
    15. Zbigniew Bohdanowicz & Jarosław Kowalski & Cezary Biele, 2022. "Intentions to Charge Electric Vehicles Using Vehicle-to-Grid Technology among People with Different Motivations to Save Energy," Sustainability, MDPI, vol. 14(19), pages 1-10, October.
    16. Khaleghikarahrodi, Mehrsa & Macht, Gretchen A., 2023. "Patterns, no patterns, that is the question: Quantifying users’ electric vehicle charging," Transport Policy, Elsevier, vol. 141(C), pages 291-304.
    17. Ke Li & Heng Zhang & Xiaoyu Zheng & Chang Liu & Qianding Chen, 2022. "Hydrogen Production by Water Electrolysis with Low Power and High Efficiency Based on Pre-Magnetic Polarization," Energies, MDPI, vol. 15(5), pages 1-12, March.
    18. Anzhelika M. Eremeeva & Natalia K. Kondrasheva & Artyom F. Khasanov & Ivan L. Oleynik, 2023. "Environmentally Friendly Diesel Fuel Obtained from Vegetable Raw Materials and Hydrocarbon Crude," Energies, MDPI, vol. 16(5), pages 1-12, February.
    19. Ivo Araújo & Leonel J. R. Nunes & António Curado, 2023. "Photovoltaic Production Management under Constrained Regulatory Requirements: A Step towards a Local Energy Community Creation," Energies, MDPI, vol. 16(22), pages 1-19, November.
    20. Chiara Bordin & Asgeir Tomasgard, 2021. "Behavioural Change in Green Transportation: Micro-Economics Perspectives and Optimization Strategies," Energies, MDPI, vol. 14(13), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5077-:d:1184055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.