IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4783-d1173779.html
   My bibliography  Save this article

Two-Stage Dry Reforming Process for Biomass Gasification: Product Characteristics and Energy Analysis

Author

Listed:
  • Yang Gao

    (School of Metallurgy, Northeastern University, Shenyang 110819, China)

  • Huaqing Xie

    (School of Metallurgy, Northeastern University, Shenyang 110819, China
    Institute for Frontier Technologies of Low-Carbon Steelmaking, Northeastern University, Shenyang 110819, China
    Liaoning Province Engineering Research Center for Technologies of Low-Carbon Steelmaking, Northeastern University, Shenyang 110819, China)

  • Zhenyu Yu

    (School of Metallurgy, Northeastern University, Shenyang 110819, China)

  • Mengxin Qin

    (School of Metallurgy, Northeastern University, Shenyang 110819, China)

  • Zhenguo Wu

    (School of Metallurgy, Northeastern University, Shenyang 110819, China)

  • Panlei Wang

    (School of Metallurgy, Northeastern University, Shenyang 110819, China
    State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Xi Zhao

    (School of Metallurgy, Northeastern University, Shenyang 110819, China)

  • Shiyi Zhang

    (School of Metallurgy, Northeastern University, Shenyang 110819, China)

Abstract

The utilization of biomass can not only alleviate the energy crisis but also reduce the pollution of fossil fuels to the environment. Biomass gasification is one of the main utilization methods, which can effectively convert biomass into high-value and wide-use gasification gas. However, this process inevitably produces the by-product tar, which affects the yield of syngas. In order to solve this problem, a two-stage process combining biomass pyrolysis and CO 2 catalytic reforming is proposed in this paper, which is used to prepare high calorific value syngas rich in H 2 and CO and reduce the by-product tar of biomass gasification while realizing the resource utilization of CO 2 . The effects of the reforming temperature and CO 2 /C ratio on the gas yield and calorific value of biomass were investigated by catalytic gasification reforming device, and the system energy consumption was analyzed. With the increase of reforming temperature, the yield of CO increased, and the yield of H 2 and the calorific value of gas increased first and then decreased. Increasing the CO 2 /C ratio within a proper range is beneficial to the formation of syngas. When the reforming temperature is 900 °C and the CO 2 /C ratio is 1, syngas with a high gas calorific value is obtained, which of is 2.75 MJ/kg is obtained. At this time, the yield of H 2 and CO reached the maximums, which were 0.46 Nm 3 /kg and 0.28 Nm 3 /kg, respectively. Under these conditions, the total energy consumption of the system is 0.68 MJ/kg, slightly more than 0, and does not require too much external heat.

Suggested Citation

  • Yang Gao & Huaqing Xie & Zhenyu Yu & Mengxin Qin & Zhenguo Wu & Panlei Wang & Xi Zhao & Shiyi Zhang, 2023. "Two-Stage Dry Reforming Process for Biomass Gasification: Product Characteristics and Energy Analysis," Energies, MDPI, vol. 16(12), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4783-:d:1173779
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4783/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4783/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    2. Oh, Gunung & Park, Seo Yoon & Seo, Myung Won & Kim, Yong Ku & Ra, Ho Won & Lee, Jae-Goo & Yoon, Sang Jun, 2016. "Ni/Ru–Mn/Al2O3 catalysts for steam reforming of toluene as model biomass tar," Renewable Energy, Elsevier, vol. 86(C), pages 841-847.
    3. Parthasarathy, Prakash & Narayanan, K. Sheeba, 2014. "Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review," Renewable Energy, Elsevier, vol. 66(C), pages 570-579.
    4. María Pilar González-Vázquez & Fernando Rubiera & Covadonga Pevida & Daniel T. Pio & Luís A.C. Tarelho, 2021. "Thermodynamic Analysis of Biomass Gasification Using Aspen Plus: Comparison of Stoichiometric and Non-Stoichiometric Models," Energies, MDPI, vol. 14(1), pages 1-17, January.
    5. Li, Longzhi & Yang, Zhijuan & Qin, Xiaomin & Chen, Jian & Yan, Keshuo & Zou, Guifu & Peng, Zhuoyan & Wang, Fumao & Song, Zhanlong & Ma, Chunyuan, 2019. "Toluene microwave-assisted reforming with CO2 or a mixed agent of CO2-H2O on Fe-doped activated biochar," Energy, Elsevier, vol. 177(C), pages 358-366.
    6. Yang, Hanmin & Cui, Yuxiao & Han, Tong & Sandström, Linda & Jönsson, Pär & Yang, Weihong, 2022. "High-purity syngas production by cascaded catalytic reforming of biomass pyrolysis vapors," Applied Energy, Elsevier, vol. 322(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Kakati, Ujjiban & Sakhiya, Anil Kumar & Baghel, Paramjeet & Trada, Akshit & Mahapatra, Sadhan & Upadhyay, Darshit & Kaushal, Priyanka, 2022. "Sustainable utilization of bamboo through air-steam gasification in downdraft gasifier: Experimental and simulation approach," Energy, Elsevier, vol. 252(C).
    3. Qin, Tao & Lu, Qiuxiang & Xiang, Hao & Luo, Xiulin & Shenfu, Yuan, 2023. "Ca promoted Ni–Co bimetallic catalyzed coal pyrolysis and char steam gasification," Energy, Elsevier, vol. 282(C).
    4. José Juan Alvarado Flores & Jorge Víctor Alcaraz Vera & María Liliana Ávalos Rodríguez & Luis Bernardo López Sosa & José Guadalupe Rutiaga Quiñones & Luís Fernando Pintor Ibarra & Francisco Márquez Mo, 2022. "Analysis of Pyrolysis Kinetic Parameters Based on Various Mathematical Models for More than Twenty Different Biomasses: A Review," Energies, MDPI, vol. 15(18), pages 1-19, September.
    5. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    6. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    7. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    8. Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
    9. Tian, Beile & Mao, Songbo & Guo, Feiqiang & Bai, Jiaming & Shu, Rui & Qian, Lin & Liu, Qi, 2022. "Monolithic biochar-supported cobalt-based catalysts with high-activity and superior-stability for biomass tar reforming," Energy, Elsevier, vol. 242(C).
    10. Hanaoka, Toshiaki & Fujimoto, Shinji & Kihara, Hideyuki, 2019. "Improvement of the 1,3-butadiene production process from lignin – A comparison with the gasification power generation process," Renewable Energy, Elsevier, vol. 135(C), pages 1303-1313.
    11. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.
    12. Martínez, Laura V. & Rubiano, Jairo E. & Figueredo, Manuel & Gómez, María F., 2020. "Experimental study on the performance of gasification of corncobs in a downdraft fixed bed gasifier at various conditions," Renewable Energy, Elsevier, vol. 148(C), pages 1216-1226.
    13. Banerjee, Debarun & Kushwaha, Nidhi & Shetti, Nagaraj P. & Aminabhavi, Tejraj M. & Ahmad, Ejaz, 2022. "Green hydrogen production via photo-reforming of bio-renewable resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Ansari, Khursheed B. & Gaikar, Vilas G., 2019. "Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron," Renewable Energy, Elsevier, vol. 130(C), pages 305-318.
    15. Meloni, Eugenio & Martino, Marco & Palma, Vincenzo, 2022. "Microwave assisted steam reforming in a high efficiency catalytic reactor," Renewable Energy, Elsevier, vol. 197(C), pages 893-901.
    16. Ly, Hoang Vu & Lim, Dong-Hyeon & Sim, Jae Wook & Kim, Seung-Soo & Kim, Jinsoo, 2018. "Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst," Energy, Elsevier, vol. 162(C), pages 564-575.
    17. Wang, Chao & Zhu, Lianfeng & Zhang, Mengjuan & Han, Zhennan & Jia, Xin & Bai, Dingrong & Duo, Wenli & Bi, Xiaotao & Abudula, Abuliti & Guan, Guoqing & Xu, Guangwen, 2022. "A two-stage circulated fluidized bed process to minimize tar generation of biomass gasification for fuel gas production," Applied Energy, Elsevier, vol. 323(C).
    18. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    19. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    20. Song, Hee Gaen & Chun, Young Nam, 2020. "Tar decomposition-reforming conversion on microwave-heating carbon receptor," Energy, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4783-:d:1173779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.