IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4630-d1168188.html
   My bibliography  Save this article

Method for Forecasting the Remaining Useful Life of a Furnace Transformer Based on Online Monitoring Data

Author

Listed:
  • Andrey A. Radionov

    (Department of Automation and Control, Moscow Polytechnic University, 107023 Moscow, Russia)

  • Ivan V. Liubimov

    (Department of Electric Drive and Mechatronics, South Ural State University, 454080 Chelyabinsk, Russia)

  • Igor M. Yachikov

    (Department of Information-Measuring Equipment, South Ural State University, 454080 Chelyabinsk, Russia)

  • Ildar R. Abdulveleev

    (Power Engineering and Automated Systems Institute, Nosov Magnitogorsk State Technical University, 455000 Magnitogorsk, Russia)

  • Ekaterina A. Khramshina

    (Power Engineering and Automated Systems Institute, Nosov Magnitogorsk State Technical University, 455000 Magnitogorsk, Russia)

  • Alexander S. Karandaev

    (Power Engineering and Automated Systems Institute, Nosov Magnitogorsk State Technical University, 455000 Magnitogorsk, Russia)

Abstract

Implementing the concept of a “smart furnace transformer” should stipulate its information support throughout its life cycle. This requires improving techniques for estimating the transformer’s health and forecasting its remaining useful life (RUL). A brief review of the problem being solved has shown that the known RUL estimation techniques include processing the results of measuring the facility state parameters using various mathematical methods. Data processing techniques (deep learning, SOLA, etc.) are used, but there is no information on their application in online monitoring systems. Herewith, fast (shock) changes in the resource caused by the failures and subsequent recoveries of the facility’s health have not been considered. This reduces the RUL forecasting accuracy for the repairable equipment, including transformers. It is especially relevant to consider the impact of sudden state changes when it comes to furnace transformers due to a cumulative wear effect determined by their frequent connections to the grid (up to 100 times a day). The proposed approach is based on calculating the RUL by analytical dependencies, considering the failures and recoveries of the facility state. For the first time, an engineering RUL forecasting technique has been developed, based on the online diagnostic monitoring data results provided in the form of time series. The equipment’s relative failure tolerance index, calculated with analytical dependencies, has first been used in RUL forecasting. As a generalized indicator, a relative failure tolerance index considering the facility’s state change dynamics has been proposed. The application of the RUL forecasting technique based on the results of dissolved gas analysis of a ladle furnace unit’s transformer is demonstrated. The changes in the transformer state during the operation period from 2014 to 2022 have been studied. The RUL was calculated in the intensive aging interval; the winding dismantling results were demonstrated, which confirmed developing destructive processes in the insulation. The key practical result of the study is reducing accidents and increasing the service life of the arc and ladle furnace transformers. The techno-economic effect aims to ensure process continuity and increase the metallurgical enterprise’s output (we cannot quantify this effect since it depends on the performance of a particular enterprise). It is recommended to use the technique to forecast the RUL of repairable facilities equipped with online monitoring systems.

Suggested Citation

  • Andrey A. Radionov & Ivan V. Liubimov & Igor M. Yachikov & Ildar R. Abdulveleev & Ekaterina A. Khramshina & Alexander S. Karandaev, 2023. "Method for Forecasting the Remaining Useful Life of a Furnace Transformer Based on Online Monitoring Data," Energies, MDPI, vol. 16(12), pages 1-27, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4630-:d:1168188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenqi Ge & Chenchen Zhang & Yi Xie & Ming Yu & Youhua Wang, 2021. "Analysis of the Electromechanical Characteristics of Power Transformer under Different Residual Fluxes," Energies, MDPI, vol. 14(24), pages 1-22, December.
    2. Wani, Shufali Ashraf & Rana, Ankur Singh & Sohail, Shiraz & Rahman, Obaidur & Parveen, Shaheen & Khan, Shakeb A., 2021. "Advances in DGA based condition monitoring of transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
    4. Koosha Rafiee & Qianmei Feng & David Coit, 2014. "Reliability modeling for dependent competing failure processes with changing degradation rate," IISE Transactions, Taylor & Francis Journals, vol. 46(5), pages 483-496.
    5. Nan Chen & Kwok Tsui, 2013. "Condition monitoring and remaining useful life prediction using degradation signals: revisited," IISE Transactions, Taylor & Francis Journals, vol. 45(9), pages 939-952.
    6. Georgi Ivanov & Anelia Spasova & Valentin Mateev & Iliana Marinova, 2023. "Applied Complex Diagnostics and Monitoring of Special Power Transformers," Energies, MDPI, vol. 16(5), pages 1-24, February.
    7. Patryk Bohatyrewicz & Andrzej Mrozik, 2021. "The Analysis of Power Transformer Population Working in Different Operating Conditions with the Use of Health Index," Energies, MDPI, vol. 14(16), pages 1-14, August.
    8. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    9. Sonia Barrios & David Buldain & María Paz Comech & Ian Gilbert & Iñaki Orue, 2019. "Partial Discharge Classification Using Deep Learning Methods—Survey of Recent Progress," Energies, MDPI, vol. 12(13), pages 1-16, June.
    10. Zhang, Sen-Ju & Kang, Rui & Lin, Yan-Hui, 2021. "Remaining useful life prediction for degradation with recovery phenomenon based on uncertain process," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    11. Alexander S. Karandaev & Igor M. Yachikov & Andrey A. Radionov & Ivan V. Liubimov & Nikolay N. Druzhinin & Ekaterina A. Khramshina, 2022. "Fuzzy Algorithms for Diagnosis of Furnace Transformer Insulation Condition," Energies, MDPI, vol. 15(10), pages 1-21, May.
    12. Yan, Tao & Lei, Yaguo & Li, Naipeng & Wang, Biao & Wang, Wenting, 2021. "Degradation modeling and remaining useful life prediction for dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    13. Hazlee Azil Illias & Xin Rui Chai & Ab Halim Abu Bakar & Hazlie Mokhlis, 2015. "Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiaowu & Liu, Zhen, 2022. "A long short-term memory neural network based Wiener process model for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Cao, Shihao & Wang, Zhihua & Liu, Chengrui & Wu, Qiong & Li, Junxing & Ouyang, Xiangmin, 2023. "A novel solution for comprehensive competing failure process considering two-phase degradation and non-Poisson shock," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Chen, Ying & Wang, Yanfang & Li, Shumin & Kang, Rui, 2023. "Hybrid uncertainty quantification of dependent competing failure process with chance theory," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Meng, Huixing & Geng, Mengyao & Xing, Jinduo & Zio, Enrico, 2022. "A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena," Energy, Elsevier, vol. 261(PB).
    5. Wei, Xiaohua & Bai, Sijun & Wu, Bei, 2023. "A novel shock-dependent preventive maintenance policy for degraded systems subject to dynamic environments and N-critical shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    6. Gao, Hongda & Cui, Lirong & Dong, Qinglai, 2020. "Reliability modeling for a two-phase degradation system with a change point based on a Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    7. Wu, Bei & Wei, Xiaohua & Zhang, Yamei & Bai, Sijun, 2023. "Modeling dynamic environment effects on dependent failure processes with varying failure thresholds," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Xu, Xiaodong & Tang, Shengjin & Yu, Chuanqiang & Xie, Jian & Han, Xuebing & Ouyang, Minggao, 2021. "Remaining Useful Life Prediction of Lithium-ion Batteries Based on Wiener Process Under Time-Varying Temperature Condition," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    9. Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
    10. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    11. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    12. Liu, Di & Wang, Shaoping, 2021. "An artificial neural network supported stochastic process for degradation modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    13. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Tomasz Boczar & Sebastian Borucki & Daniel Jancarczyk & Marcin Bernas & Pawel Kurtasz, 2022. "Application of Selected Machine Learning Techniques for Identification of Basic Classes of Partial Discharges Occurring in Paper-Oil Insulation Measured by Acoustic Emission Technique," Energies, MDPI, vol. 15(14), pages 1-13, July.
    15. Rassoul Noorossana & Kamyar Sabri-Laghaie, 2015. "Reliability and maintenance models for a dependent competing-risk system with multiple time-scales," Journal of Risk and Reliability, , vol. 229(2), pages 131-142, April.
    16. Mohammad Amin Faraji & Alireza Shooshtari & Ayman El-Hag, 2023. "Stacked Ensemble Regression Model for Prediction of Furan," Energies, MDPI, vol. 16(22), pages 1-11, November.
    17. Łukasz Majka & Bernard Baron & Paweł Zydroń, 2022. "Measurement-Based Stiff Equation Methodology for Single Phase Transformer Inrush Current Computations," Energies, MDPI, vol. 15(20), pages 1-19, October.
    18. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    19. Patryk Bohatyrewicz & Szymon Banaszak, 2022. "Assessment Criteria of Changes in Health Index Values over Time—A Transformer Population Study," Energies, MDPI, vol. 15(16), pages 1-15, August.
    20. Yang, Yixin, 2021. "A machine-learning prediction method of lithium-ion battery life based on charge process for different applications," Applied Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4630-:d:1168188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.