IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v149y2021ics136403212100633x.html
   My bibliography  Save this article

Advances in DGA based condition monitoring of transformers: A review

Author

Listed:
  • Wani, Shufali Ashraf
  • Rana, Ankur Singh
  • Sohail, Shiraz
  • Rahman, Obaidur
  • Parveen, Shaheen
  • Khan, Shakeb A.

Abstract

Dissolved Gas Analysis (DGA) is a standout diagnostic strategy to recognise incipient faults and monitor the condition of oil-immersed transformers. It correlates the concentration of various insulation degradation by-products dissolved in oil with the nature of faults. DGA standards provide various interpretation methods for fault diagnosis and estimation of the useful life of insulation. These economic and widely used methods have significant limitations that hamper their resourcefulness. The uncertainty in diagnostic outcomes due to manual handling of fault data, boundary conditions, unresolved fault cases due to over-range ratios, inability to diagnose concurrently existing faults (multiple faults) and lack of severity information about incipient faults are worth mentioning. This paper reviews various solutions provided by researchers for addressing these uncertain and unresolved isssues in incipient fault diagnosis. Paper presents a systematic review of the literature that includes the application of intelligent and mathematical techniques in DGA based diagnosis. Further, it critically analyses the reported works on composite methods and finally, progress in sensor-based condition monitoring of transformer is also deliberated. This article is first of its kind where AI (Artificial Intelligence), integrated methods, mathematical and experimental approaches in DGA based diagnostics are simultaneously reviewed and analysed. The paper concludes the best possible solution for reliabile diagnosis and also explores pertinent issues of research in the area of DGA based transformer health monitoring.

Suggested Citation

  • Wani, Shufali Ashraf & Rana, Ankur Singh & Sohail, Shiraz & Rahman, Obaidur & Parveen, Shaheen & Khan, Shakeb A., 2021. "Advances in DGA based condition monitoring of transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:rensus:v:149:y:2021:i:c:s136403212100633x
    DOI: 10.1016/j.rser.2021.111347
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212100633X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Faria, Haroldo & Costa, João Gabriel Spir & Olivas, Jose Luis Mejia, 2015. "A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 201-209.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey A. Radionov & Ivan V. Liubimov & Igor M. Yachikov & Ildar R. Abdulveleev & Ekaterina A. Khramshina & Alexander S. Karandaev, 2023. "Method for Forecasting the Remaining Useful Life of a Furnace Transformer Based on Online Monitoring Data," Energies, MDPI, vol. 16(12), pages 1-27, June.
    2. Fahad M. Almasoudi, 2023. "Grid Distribution Fault Occurrence and Remedial Measures Prediction/Forecasting through Different Deep Learning Neural Networks by Using Real Time Data from Tabuk City Power Grid," Energies, MDPI, vol. 16(3), pages 1-20, January.
    3. Yang, Zaoli & Shang, Wen-Long & Zhang, Haoran & Garg, Harish & Han, Chunjia, 2022. "Assessing the green distribution transformer manufacturing process using a cloud-based q-rung orthopair fuzzy multi-criteria framework," Applied Energy, Elsevier, vol. 311(C).
    4. Jelke Wibbeke & Payam Teimourzadeh Baboli & Sebastian Rohjans, 2022. "Optimal Data Reduction of Training Data in Machine Learning-Based Modelling: A Multidimensional Bin Packing Approach," Energies, MDPI, vol. 15(9), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peters, Lennart & Madlener, Reinhard, 2017. "Economic evaluation of maintenance strategies for ground-mounted solar photovoltaic plants," Applied Energy, Elsevier, vol. 199(C), pages 264-280.
    2. Max Gabriel Steiner & Anderson Diogo Spacek & João Mota Neto & Pedro Rodrigo Silva Moura & Oswaldo Hideo Ando Junior & Cleber Lourenço Izidoro & Luciano Dagostin Bilessimo & Jefferson Diogo Spacek, 2020. "“In Situ” Evaluation of Mechanical Wear of Mobile Contacts of Electricity Voltage Regulator," Energies, MDPI, vol. 13(19), pages 1-17, September.
    3. Zhi-Jun Li & Wei-Gen Chen & Jie Shan & Zhi-Yong Yang & Ling-Yan Cao, 2022. "Enhanced Distributed Parallel Firefly Algorithm Based on the Taguchi Method for Transformer Fault Diagnosis," Energies, MDPI, vol. 15(9), pages 1-22, April.
    4. Sergio Bustamante & Mario Manana & Alberto Arroyo & Raquel Martinez & Alberto Laso, 2020. "A Methodology for the Calculation of Typical Gas Concentration Values and Sampling Intervals in the Power Transformers of a Distribution System Operator," Energies, MDPI, vol. 13(22), pages 1-18, November.
    5. Xiaojun Tang & Wenjing Wang & Xuliang Zhang & Erzhen Wang & Xuanjiannan Li, 2018. "On-Line Analysis of Oil-Dissolved Gas in Power Transformers Using Fourier Transform Infrared Spectrometry," Energies, MDPI, vol. 11(11), pages 1-15, November.
    6. Bing Zeng & Jiang Guo & Fangqing Zhang & Wenqiang Zhu & Zhihuai Xiao & Sixu Huang & Peng Fan, 2020. "Prediction Model for Dissolved Gas Concentration in Transformer Oil Based on Modified Grey Wolf Optimizer and LSSVM with Grey Relational Analysis and Empirical Mode Decomposition," Energies, MDPI, vol. 13(2), pages 1-20, January.
    7. Christian Gianoglio & Edoardo Ragusa & Andrea Bruzzone & Paolo Gastaldo & Rodolfo Zunino & Francesco Guastavino, 2020. "Unsupervised Monitoring System for Predictive Maintenance of High Voltage Apparatus," Energies, MDPI, vol. 13(5), pages 1-16, March.
    8. Qu, Guanghao & Li, Shengtao, 2023. "Atomic mechanisms of long-term pyrolysis and gas production in cellulose-oil composite for transformer insulation," Applied Energy, Elsevier, vol. 350(C).
    9. Hamid Mirshekali & Athila Q. Santos & Hamid Reza Shaker, 2023. "A Survey of Time-Series Prediction for Digitally Enabled Maintenance of Electrical Grids," Energies, MDPI, vol. 16(17), pages 1-29, August.
    10. Olga Melnikova & Alexandr Nazarychev & Konstantin Suslov, 2022. "Enhancement of the Technique for Calculation and Assessment of the Condition of Major Insulation of Power Transformers," Energies, MDPI, vol. 15(4), pages 1-13, February.
    11. Manito, Alex R.A. & Pinto, Aimé & Zilles, Roberto, 2016. "Evaluation of utility transformers' lifespan with different levels of grid-connected photovoltaic systems penetration," Renewable Energy, Elsevier, vol. 96(PA), pages 700-714.
    12. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Bing Zeng & Jiang Guo & Wenqiang Zhu & Zhihuai Xiao & Fang Yuan & Sixu Huang, 2019. "A Transformer Fault Diagnosis Model Based On Hybrid Grey Wolf Optimizer and LS-SVM," Energies, MDPI, vol. 12(21), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:149:y:2021:i:c:s136403212100633x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.