IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4170-d282455.html
   My bibliography  Save this article

A Transformer Fault Diagnosis Model Based On Hybrid Grey Wolf Optimizer and LS-SVM

Author

Listed:
  • Bing Zeng

    (Intelligent Power Equipment Technology Research Center, Wuhan University, Wuhan 430072, China
    College of Power & Mechanical Engineering, Wuhan University, Wuhan 430072, China)

  • Jiang Guo

    (Intelligent Power Equipment Technology Research Center, Wuhan University, Wuhan 430072, China
    College of Power & Mechanical Engineering, Wuhan University, Wuhan 430072, China)

  • Wenqiang Zhu

    (Intelligent Power Equipment Technology Research Center, Wuhan University, Wuhan 430072, China
    College of Power & Mechanical Engineering, Wuhan University, Wuhan 430072, China)

  • Zhihuai Xiao

    (College of Power & Mechanical Engineering, Wuhan University, Wuhan 430072, China)

  • Fang Yuan

    (Intelligent Power Equipment Technology Research Center, Wuhan University, Wuhan 430072, China
    College of Power & Mechanical Engineering, Wuhan University, Wuhan 430072, China)

  • Sixu Huang

    (Intelligent Power Equipment Technology Research Center, Wuhan University, Wuhan 430072, China
    College of Power & Mechanical Engineering, Wuhan University, Wuhan 430072, China)

Abstract

Dissolved gas analysis (DGA) is a widely used method for transformer internal fault diagnosis. However, the traditional DGA technology, including Key Gas method, Dornenburg ratio method, Rogers ratio method, International Electrotechnical Commission (IEC) three-ratio method, and Duval triangle method, etc., suffers from shortcomings such as coding deficiencies, excessive coding boundaries and critical value criterion defects, which affect the reliability of fault analysis. Grey wolf optimizer (GWO) is a novel swarm intelligence optimization algorithm proposed in 2014 and it is easy for the original GWO to fall into the local optimum. This paper presents a new meta-heuristic method by hybridizing GWO with differential evolution (DE) to avoid the local optimum, improve the diversity of the population and meanwhile make an appropriate compromise between exploration and exploitation. A fault diagnosis model of hybrid grey wolf optimized least square support vector machine (HGWO-LSSVM) is proposed and applied to transformer fault diagnosis with the optimal hybrid DGA feature set selected as the input of the model. The kernel principal component analysis (KPCA) is used for feature extraction, which can decrease the training time of the model. The proposed method shows high accuracy of fault diagnosis by comparing with traditional DGA methods, least square support vector machine (LSSVM), GWO-LSSVM, particle swarm optimization (PSO)-LSSVM and genetic algorithm (GA)-LSSVM. It also shows good fitness and fast convergence rate. Accuracies calculated in this paper, however, are significantly affected by the misidentifications of faults that have been made in the DGA data collected from the literature.

Suggested Citation

  • Bing Zeng & Jiang Guo & Wenqiang Zhu & Zhihuai Xiao & Fang Yuan & Sixu Huang, 2019. "A Transformer Fault Diagnosis Model Based On Hybrid Grey Wolf Optimizer and LS-SVM," Energies, MDPI, vol. 12(21), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4170-:d:282455
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4170/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed Abu-Siada, 2019. "Improved Consistent Interpretation Approach of Fault Type within Power Transformers Using Dissolved Gas Analysis and Gene Expression Programming," Energies, MDPI, vol. 12(4), pages 1-13, February.
    2. Kutaiba Sabah Nimma & Monaaf D. A. Al-Falahi & Hung Duc Nguyen & S. D. G. Jayasinghe & Thair S. Mahmoud & Michael Negnevitsky, 2018. "Grey Wolf Optimization-Based Optimum Energy-Management and Battery-Sizing Method for Grid-Connected Microgrids," Energies, MDPI, vol. 11(4), pages 1-27, April.
    3. Chenmeng Xiang & Quan Zhou & Jian Li & Qingdan Huang & Haoyong Song & Zhaotao Zhang, 2016. "Comparison of Dissolved Gases in Mineral and Vegetable Insulating Oils under Typical Electrical and Thermal Faults," Energies, MDPI, vol. 9(5), pages 1-22, April.
    4. de Faria, Haroldo & Costa, João Gabriel Spir & Olivas, Jose Luis Mejia, 2015. "A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 201-209.
    5. Jiake Fang & Hanbo Zheng & Jiefeng Liu & Junhui Zhao & Yiyi Zhang & Ke Wang, 2018. "A Transformer Fault Diagnosis Model Using an Optimal Hybrid Dissolved Gas Analysis Features Subset with Improved Social Group Optimization-Support Vector Machine Classifier," Energies, MDPI, vol. 11(8), pages 1-18, July.
    6. Fang Yuan & Jiang Guo & Zhihuai Xiao & Bing Zeng & Wenqiang Zhu & Sixu Huang, 2019. "A Transformer Fault Diagnosis Model Based on Chemical Reaction Optimization and Twin Support Vector Machine," Energies, MDPI, vol. 12(5), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ancuța-Mihaela Aciu & Claudiu-Ionel Nicola & Marcel Nicola & Maria-Cristina Nițu, 2021. "Complementary Analysis for DGA Based on Duval Methods and Furan Compounds Using Artificial Neural Networks," Energies, MDPI, vol. 14(3), pages 1-22, January.
    2. Yiyi Zhang & Yuxuan Wang & Xianhao Fan & Wei Zhang & Ran Zhuo & Jian Hao & Zhen Shi, 2020. "An Integrated Model for Transformer Fault Diagnosis to Improve Sample Classification near Decision Boundary of Support Vector Machine," Energies, MDPI, vol. 13(24), pages 1-15, December.
    3. Rahman Azis Prasojo & Harry Gumilang & Suwarno & Nur Ulfa Maulidevi & Bambang Anggoro Soedjarno, 2020. "A Fuzzy Logic Model for Power Transformer Faults’ Severity Determination Based on Gas Level, Gas Rate, and Dissolved Gas Analysis Interpretation," Energies, MDPI, vol. 13(4), pages 1-20, February.
    4. Xiao Yang & Fengrong Bi & Yabing Jing & Xin Li & Guichang Zhang, 2022. "A Condition-Monitoring Approach for Diesel Engines Based on an Adaptive VMD and Sparse Representation Theory," Energies, MDPI, vol. 15(9), pages 1-20, May.
    5. Akilu Yunusa-Kaltungo & Ruifeng Cao, 2020. "Towards Developing an Automated Faults Characterisation Framework for Rotating Machines. Part 1: Rotor-Related Faults," Energies, MDPI, vol. 13(6), pages 1-20, March.
    6. Fahad M. Almasoudi, 2023. "Grid Distribution Fault Occurrence and Remedial Measures Prediction/Forecasting through Different Deep Learning Neural Networks by Using Real Time Data from Tabuk City Power Grid," Energies, MDPI, vol. 16(3), pages 1-20, January.
    7. Bonginkosi A. Thango, 2022. "Dissolved Gas Analysis and Application of Artificial Intelligence Technique for Fault Diagnosis in Power Transformers: A South African Case Study," Energies, MDPI, vol. 15(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janvier Sylvestre N’cho & Issouf Fofana, 2020. "Review of Fiber Optic Diagnostic Techniques for Power Transformers," Energies, MDPI, vol. 13(7), pages 1-24, April.
    2. Ancuța-Mihaela Aciu & Claudiu-Ionel Nicola & Marcel Nicola & Maria-Cristina Nițu, 2021. "Complementary Analysis for DGA Based on Duval Methods and Furan Compounds Using Artificial Neural Networks," Energies, MDPI, vol. 14(3), pages 1-22, January.
    3. Ning Wang & Fei Zhao, 2020. "An Assessment of the Condition of Distribution Network Equipment Based on Large Data Fuzzy Decision-Making," Energies, MDPI, vol. 13(1), pages 1-13, January.
    4. Peters, Lennart & Madlener, Reinhard, 2017. "Economic evaluation of maintenance strategies for ground-mounted solar photovoltaic plants," Applied Energy, Elsevier, vol. 199(C), pages 264-280.
    5. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    6. Alper Aydogan & Fatih Atalar & Aysel Ersoy Yilmaz & Pawel Rozga, 2020. "Using the Method of Harmonic Distortion Analysis in Partial Discharge Assessment in Mineral Oil in a Non-Uniform Electric Field," Energies, MDPI, vol. 13(18), pages 1-18, September.
    7. Yachao Wang & Feipeng Wang & Jian Li & Suning Liang & Jinghan Zhou, 2018. "Electronic Properties of Typical Molecules and the Discharge Mechanism of Vegetable and Mineral Insulating Oils," Energies, MDPI, vol. 11(3), pages 1-13, February.
    8. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    9. Kai Ding & Chen Yao & Yifan Li & Qinglong Hao & Yaqiong Lv & Zengrui Huang, 2022. "A Review on Fault Diagnosis Technology of Key Components in Cold Ironing System," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    10. Max Gabriel Steiner & Anderson Diogo Spacek & João Mota Neto & Pedro Rodrigo Silva Moura & Oswaldo Hideo Ando Junior & Cleber Lourenço Izidoro & Luciano Dagostin Bilessimo & Jefferson Diogo Spacek, 2020. "“In Situ” Evaluation of Mechanical Wear of Mobile Contacts of Electricity Voltage Regulator," Energies, MDPI, vol. 13(19), pages 1-17, September.
    11. Jun-Mo Kim & Jeong Lee & Jin-Wook Kim & Junsin Yi & Chung-Yuen Won, 2021. "Power Conversion System Operation to Reduce the Electricity Purchasing Cost of Energy Storage Systems," Energies, MDPI, vol. 14(16), pages 1-20, August.
    12. Luc Loiselle & U. Mohan Rao & Issouf Fofana, 2020. "Gassing Tendency of Fresh and Aged Mineral Oil and Ester Fluids under Electrical and Thermal Fault Conditions," Energies, MDPI, vol. 13(13), pages 1-15, July.
    13. Zhi-Jun Li & Wei-Gen Chen & Jie Shan & Zhi-Yong Yang & Ling-Yan Cao, 2022. "Enhanced Distributed Parallel Firefly Algorithm Based on the Taguchi Method for Transformer Fault Diagnosis," Energies, MDPI, vol. 15(9), pages 1-22, April.
    14. Damian Hasterok & Rui Castro & Marcin Landrat & Krzysztof Pikoń & Markus Doepfert & Hugo Morais, 2021. "Polish Energy Transition 2040: Energy Mix Optimization Using Grey Wolf Optimizer," Energies, MDPI, vol. 14(2), pages 1-27, January.
    15. Jingxin Zou & Weigen Chen & Fu Wan & Zhou Fan & Lingling Du, 2016. "Raman Spectral Characteristics of Oil-Paper Insulation and Its Application to Ageing Stage Assessment of Oil-Immersed Transformers," Energies, MDPI, vol. 9(11), pages 1-14, November.
    16. Fang Yuan & Jiang Guo & Zhihuai Xiao & Bing Zeng & Wenqiang Zhu & Sixu Huang, 2020. "An Interval Forecasting Model Based on Phase Space Reconstruction and Weighted Least Squares Support Vector Machine for Time Series of Dissolved Gas Content in Transformer Oil," Energies, MDPI, vol. 13(7), pages 1-28, April.
    17. Sergio Bustamante & Mario Manana & Alberto Arroyo & Raquel Martinez & Alberto Laso, 2020. "A Methodology for the Calculation of Typical Gas Concentration Values and Sampling Intervals in the Power Transformers of a Distribution System Operator," Energies, MDPI, vol. 13(22), pages 1-18, November.
    18. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    19. Fahad M. Almasoudi, 2023. "Grid Distribution Fault Occurrence and Remedial Measures Prediction/Forecasting through Different Deep Learning Neural Networks by Using Real Time Data from Tabuk City Power Grid," Energies, MDPI, vol. 16(3), pages 1-20, January.
    20. Bustamante, Sergio & Manana, Mario & Arroyo, Alberto & Laso, Alberto & Martinez, Raquel, 2024. "Evolution of graphical methods for the identification of insulation faults in oil-immersed power transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4170-:d:282455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.