IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4365-d1725860.html
   My bibliography  Save this article

Research on the Response Characteristics of Core Grounding Current Signals in Power Transformers Under Different Operating Conditions

Author

Listed:
  • Li Wang

    (China Three Gorges Group Jiangsu Energy Investment Co., Ltd., Nanjing 210019, China)

  • Hongwei Ding

    (State Key Lab of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China)

  • Dong Cai

    (China Three Gorges Group Jiangsu Energy Investment Co., Ltd., Nanjing 210019, China)

  • Yu Liu

    (China Three Gorges Group Jiangsu Energy Investment Co., Ltd., Nanjing 210019, China)

  • Peng Du

    (China Three Gorges Group Jiangsu Energy Investment Co., Ltd., Nanjing 210019, China)

  • Xiankang Dai

    (China Three Gorges Group Jiangsu Energy Investment Co., Ltd., Nanjing 210019, China)

  • Zhenghai Sha

    (China Three Gorges Group Jiangsu Energy Investment Co., Ltd., Nanjing 210019, China)

  • Xutao Han

    (State Key Lab of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

This study delves into the response characteristics of core grounding current signals in power transformers across different operating conditions, aiming to enhance the accuracy of transformer condition assessment. Existing detection technologies often rely on single-parameter methods, which fall short in providing a comprehensive evaluation of transformer conditions. To address this limitation, this research develops a wideband circuit model based on multi-conductor transmission line theory and backed by experimental validation. The model systematically investigates the response mechanisms of core grounding current to various electrical stresses, including impulse voltages, power-frequency harmonics, and partial discharges. The findings reveal distinct response characteristics of core grounding current under different stresses. Under impulse voltage excitation, the core current exhibits high-frequency oscillatory decay with characteristics linked to voltage waveform parameters. In harmonic conditions, the current spectrum shows linear correspondence with excitation voltages, with no resonance below 1 kHz. Partial discharges induce high-frequency oscillations in the grounding current due to multi-resonant networks formed by distributed winding-core parameters. This study establishes a new theoretical framework for transformer condition assessment based on core grounding current analysis, offering critical insights for optimizing detection technologies and overcoming the limitations of traditional methods.

Suggested Citation

  • Li Wang & Hongwei Ding & Dong Cai & Yu Liu & Peng Du & Xiankang Dai & Zhenghai Sha & Xutao Han, 2025. "Research on the Response Characteristics of Core Grounding Current Signals in Power Transformers Under Different Operating Conditions," Energies, MDPI, vol. 18(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4365-:d:1725860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4365/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4365/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Faria, Haroldo & Costa, João Gabriel Spir & Olivas, Jose Luis Mejia, 2015. "A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 201-209.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peters, Lennart & Madlener, Reinhard, 2017. "Economic evaluation of maintenance strategies for ground-mounted solar photovoltaic plants," Applied Energy, Elsevier, vol. 199(C), pages 264-280.
    2. Max Gabriel Steiner & Anderson Diogo Spacek & João Mota Neto & Pedro Rodrigo Silva Moura & Oswaldo Hideo Ando Junior & Cleber Lourenço Izidoro & Luciano Dagostin Bilessimo & Jefferson Diogo Spacek, 2020. "“In Situ” Evaluation of Mechanical Wear of Mobile Contacts of Electricity Voltage Regulator," Energies, MDPI, vol. 13(19), pages 1-17, September.
    3. Zhi-Jun Li & Wei-Gen Chen & Jie Shan & Zhi-Yong Yang & Ling-Yan Cao, 2022. "Enhanced Distributed Parallel Firefly Algorithm Based on the Taguchi Method for Transformer Fault Diagnosis," Energies, MDPI, vol. 15(9), pages 1-22, April.
    4. Sergio Bustamante & Mario Manana & Alberto Arroyo & Raquel Martinez & Alberto Laso, 2020. "A Methodology for the Calculation of Typical Gas Concentration Values and Sampling Intervals in the Power Transformers of a Distribution System Operator," Energies, MDPI, vol. 13(22), pages 1-18, November.
    5. Bustamante, Sergio & Manana, Mario & Arroyo, Alberto & Laso, Alberto & Martinez, Raquel, 2024. "Evolution of graphical methods for the identification of insulation faults in oil-immersed power transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Xiaojun Tang & Wenjing Wang & Xuliang Zhang & Erzhen Wang & Xuanjiannan Li, 2018. "On-Line Analysis of Oil-Dissolved Gas in Power Transformers Using Fourier Transform Infrared Spectrometry," Energies, MDPI, vol. 11(11), pages 1-15, November.
    7. Bing Zeng & Jiang Guo & Fangqing Zhang & Wenqiang Zhu & Zhihuai Xiao & Sixu Huang & Peng Fan, 2020. "Prediction Model for Dissolved Gas Concentration in Transformer Oil Based on Modified Grey Wolf Optimizer and LSSVM with Grey Relational Analysis and Empirical Mode Decomposition," Energies, MDPI, vol. 13(2), pages 1-20, January.
    8. Marek Nagy & Marcel Figura & Katarina Valaskova & George Lăzăroiu, 2025. "Predictive Maintenance Algorithms, Artificial Intelligence Digital Twin Technologies, and Internet of Robotic Things in Big Data-Driven Industry 4.0 Manufacturing Systems," Mathematics, MDPI, vol. 13(6), pages 1-28, March.
    9. Christian Gianoglio & Edoardo Ragusa & Andrea Bruzzone & Paolo Gastaldo & Rodolfo Zunino & Francesco Guastavino, 2020. "Unsupervised Monitoring System for Predictive Maintenance of High Voltage Apparatus," Energies, MDPI, vol. 13(5), pages 1-16, March.
    10. Qu, Guanghao & Li, Shengtao, 2023. "Atomic mechanisms of long-term pyrolysis and gas production in cellulose-oil composite for transformer insulation," Applied Energy, Elsevier, vol. 350(C).
    11. Wani, Shufali Ashraf & Rana, Ankur Singh & Sohail, Shiraz & Rahman, Obaidur & Parveen, Shaheen & Khan, Shakeb A., 2021. "Advances in DGA based condition monitoring of transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Hamid Mirshekali & Athila Q. Santos & Hamid Reza Shaker, 2023. "A Survey of Time-Series Prediction for Digitally Enabled Maintenance of Electrical Grids," Energies, MDPI, vol. 16(17), pages 1-29, August.
    13. Olga Melnikova & Alexandr Nazarychev & Konstantin Suslov, 2022. "Enhancement of the Technique for Calculation and Assessment of the Condition of Major Insulation of Power Transformers," Energies, MDPI, vol. 15(4), pages 1-13, February.
    14. Manito, Alex R.A. & Pinto, Aimé & Zilles, Roberto, 2016. "Evaluation of utility transformers' lifespan with different levels of grid-connected photovoltaic systems penetration," Renewable Energy, Elsevier, vol. 96(PA), pages 700-714.
    15. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Bing Zeng & Jiang Guo & Wenqiang Zhu & Zhihuai Xiao & Fang Yuan & Sixu Huang, 2019. "A Transformer Fault Diagnosis Model Based On Hybrid Grey Wolf Optimizer and LS-SVM," Energies, MDPI, vol. 12(21), pages 1-18, November.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4365-:d:1725860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.