IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1394-d333377.html
   My bibliography  Save this article

Towards Developing an Automated Faults Characterisation Framework for Rotating Machines. Part 1: Rotor-Related Faults

Author

Listed:
  • Akilu Yunusa-Kaltungo

    (Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK)

  • Ruifeng Cao

    (Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
    School of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

Rotating machines are pivotal to the achievement of core operational objectives within various industries. Recent drives for developing smart systems coupled with the significant advancements in computational technologies have immensely increased the complexity of this group of critical physical industrial assets (PIAs). Vibration-based techniques have contributed significantly towards understanding the failure modes of rotating machines and their associated components. However, the very large data requirements attributable to routine vibration-based fault diagnosis at multiple measurement locations has led to the quest for alternative approaches that possess the capability to reduce faults diagnosis downtime. Initiatives aimed at rationalising vibration-based condition monitoring data in order to just retain information that offer maximum variability includes the combination of coherent composite spectrum (CCS) and principal components analysis (PCA) for rotor-related faults diagnosis. While there is no doubt about the potentials of this approach, especially that it is independent of the number of measurement locations and foundation types, its over-reliance on manual classification made it prone to human subjectivity and lack of repeatability. The current study therefore aims to further enhance existing CCS capability in two facets—(1) exploration of the possibility of automating the process by testing its compatibility with various machine learning techniques (2) incorporating spectrum energy as a novel feature. It was observed that artificial neural networks (ANN) offered the most accurate and consistent classification outcomes under all considered scenarios, which demonstrates immense opportunity for automating the process. The paper describes computational approaches, signal processing parameters and experiments used for generating the analysed vibration data.

Suggested Citation

  • Akilu Yunusa-Kaltungo & Ruifeng Cao, 2020. "Towards Developing an Automated Faults Characterisation Framework for Rotating Machines. Part 1: Rotor-Related Faults," Energies, MDPI, vol. 13(6), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1394-:d:333377
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1394/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1394/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massimo Caruso & Antonino Oscar Di Tommaso & Fabrizio Marignetti & Rosario Miceli & Giuseppe Ricco Galluzzo, 2018. "A General Mathematical Formulation for Winding Layout Arrangement of Electrical Machines," Energies, MDPI, vol. 11(2), pages 1-24, February.
    2. Bing Zeng & Jiang Guo & Wenqiang Zhu & Zhihuai Xiao & Fang Yuan & Sixu Huang, 2019. "A Transformer Fault Diagnosis Model Based On Hybrid Grey Wolf Optimizer and LS-SVM," Energies, MDPI, vol. 12(21), pages 1-18, November.
    3. Camila Paes Salomon & Claudio Ferreira & Wilson Cesar Sant’Ana & Germano Lambert-Torres & Luiz Eduardo Borges da Silva & Erik Leandro Bonaldi & Levy Ely de Lacerda de Oliveira & Bruno Silva Torres, 2019. "A Study of Fault Diagnosis Based on Electrical Signature Analysis for Synchronous Generators Predictive Maintenance in Bulk Electric Systems," Energies, MDPI, vol. 12(8), pages 1-16, April.
    4. Shuang Feng & Jianing Chen & Yi Tang, 2019. "Identification of Low Frequency Oscillations Based on Multidimensional Features and ReliefF-mRMR," Energies, MDPI, vol. 12(14), pages 1-18, July.
    5. Cheng Xiao & Zuojun Liu & Tieling Zhang & Lei Zhang, 2019. "On Fault Prediction for Wind Turbine Pitch System Using Radar Chart and Support Vector Machine Approach," Energies, MDPI, vol. 12(14), pages 1-18, July.
    6. George P. Papaioannou & Christos Dikaiakos & Anargyros Dramountanis & Panagiotis G. Papaioannou, 2016. "Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoot," Energies, MDPI, vol. 9(8), pages 1-40, August.
    7. Rongliang Shi & Xing Zhang, 2018. "VSG-Based Dynamic Frequency Support Control for Autonomous PV–Diesel Microgrids," Energies, MDPI, vol. 11(7), pages 1-16, July.
    8. Jianguo Wang & Minmin Xu & Chao Zhang & Baoshan Huang & Fengshou Gu, 2020. "Online Bearing Clearance Monitoring Based on an Accurate Vibration Analysis," Energies, MDPI, vol. 13(2), pages 1-17, January.
    9. Maher AbuBaker, 2019. "Data Mining Applications in Understanding Electricity Consumers’ Behavior: A Case Study of Tulkarm District, Palestine," Energies, MDPI, vol. 12(22), pages 1-29, November.
    10. Xiaochuan Li & Faris Elasha & Suliman Shanbr & David Mba, 2019. "Remaining Useful Life Prediction of Rolling Element Bearings Using Supervised Machine Learning," Energies, MDPI, vol. 12(14), pages 1-17, July.
    11. Anmol Aggarwal & Elias G. Strangas, 2019. "Review of Detection Methods of Static Eccentricity for Interior Permanent Magnet Synchronous Machine," Energies, MDPI, vol. 12(21), pages 1-20, October.
    12. Wanghao Fei & Paul Moses, 2019. "Fault Current Tracing and Identification via Machine Learning Considering Distributed Energy Resources in Distribution Networks," Energies, MDPI, vol. 12(22), pages 1-12, November.
    13. Yue Shen & Muhammad Abubakar & Hui Liu & Fida Hussain, 2019. "Power Quality Disturbance Monitoring and Classification Based on Improved PCA and Convolution Neural Network for Wind-Grid Distribution Systems," Energies, MDPI, vol. 12(7), pages 1-26, April.
    14. Komi Nagbe & Jairo Cugliari & Julien Jacques, 2018. "Short-Term Electricity Demand Forecasting Using a Functional State Space Model," Energies, MDPI, vol. 11(5), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohua Song & Jing Liu & Chaobo Chen & Song Gao, 2022. "Advanced Methods in Rotating Machines," Energies, MDPI, vol. 15(15), pages 1-3, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isac Antônio dos Santos Areias & Luiz Eduardo Borges da Silva & Erik Leandro Bonaldi & Levy Ely de Lacerda de Oliveira & Germano Lambert-Torres & Vitor Almeida Bernardes, 2019. "Evaluation of Current Signature in Bearing Defects by Envelope Analysis of the Vibration in Induction Motors," Energies, MDPI, vol. 12(21), pages 1-15, October.
    2. Arafat, M.Y. & Hossain, M.J. & Alam, Md Morshed, 2024. "Machine learning scopes on microgrid predictive maintenance: Potential frameworks, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    3. Paolo Castello & Carlo Muscas & Paolo Attilio Pegoraro & Sara Sulis, 2019. "PMU’s Behavior with Flicker-Generating Voltage Fluctuations: An Experimental Analysis," Energies, MDPI, vol. 12(17), pages 1-14, August.
    4. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Chao Zhang & Haoran Duan & Yu Xue & Biao Zhang & Bin Fan & Jianguo Wang & Fengshou Gu, 2020. "The Enhancement of Weak Bearing Fault Signatures by Stochastic Resonance with a Novel Potential Function," Energies, MDPI, vol. 13(23), pages 1-15, December.
    6. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Paula Remigio-Carmona & Juan-José González-de-la-Rosa & Olivia Florencias-Oliveros & José-María Sierra-Fernández & Javier Fernández-Morales & Manuel-Jesús Espinosa-Gavira & Agustín Agüera-Pérez & José, 2022. "Current Status and Future Trends of Power Quality Analysis," Energies, MDPI, vol. 15(7), pages 1-18, March.
    8. Hyun Cheol Jeong & Jaesung Jung & Byung O Kang, 2020. "Development of Operational Strategies of Energy Storage System Using Classification of Customer Load Profiles under Time-of-Use Tariffs in South Korea," Energies, MDPI, vol. 13(7), pages 1-17, April.
    9. Barbosa de Santis, Rodrigo & Silveira Gontijo, Tiago & Azevedo Costa, Marcelo, 2021. "Condition-based maintenance in hydroelectric plants: A systematic literature review," MPRA Paper 115912, University Library of Munich, Germany.
    10. Ruijin Zhu & Xuejiao Gong & Shifeng Hu & Yusen Wang, 2019. "Power Quality Disturbances Classification via Fully-Convolutional Siamese Network and k-Nearest Neighbor," Energies, MDPI, vol. 12(24), pages 1-12, December.
    11. Maher AbuBaker, 2021. "Household Electricity Load Forecasting Toward Demand Response Program Using Data Mining Techniques in A Traditional Power Grid," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 132-148.
    12. Zhenyang Qiao & Dongdong Jiang & Weinong Fu, 2023. "A Universal Parametric Modeling Framework for Electric Machine Design," Energies, MDPI, vol. 16(16), pages 1-13, August.
    13. Juan-José González de-la-Rosa & Manuel Pérez-Donsión, 2020. "Special Issue “Analysis for Power Quality Monitoring”," Energies, MDPI, vol. 13(3), pages 1-6, January.
    14. García-Gusano, Diego & Suárez-Botero, Jasson & Dufour, Javier, 2018. "Long-term modelling and assessment of the energy-economy decoupling in Spain," Energy, Elsevier, vol. 151(C), pages 455-466.
    15. Sandra Eriksson, 2019. "Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 12(14), pages 1-5, July.
    16. Alexandre Serrano-Fontova & Pablo Casals Torrens & Ricard Bosch, 2019. "Power Quality Disturbances Assessment during Unintentional Islanding Scenarios. A Contribution to Voltage Sag Studies," Energies, MDPI, vol. 12(16), pages 1-21, August.
    17. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    18. Do-In Kim, 2021. "Complementary Feature Extractions for Event Identification in Power Systems Using Multi-Channel Convolutional Neural Network," Energies, MDPI, vol. 14(15), pages 1-15, July.
    19. Hanif, Sarmad & Mukherjee, Monish & Poudel, Shiva & Yu, Min Gyung & Jinsiwale, Rohit A. & Hardy, Trevor D. & Reeve, Hayden M., 2023. "Analyzing at-scale distribution grid response to extreme temperatures," Applied Energy, Elsevier, vol. 337(C).
    20. Steven Hayslett & Elias Strangas, 2021. "Analytical Design of Sculpted Rotor Interior Permanent Magnet Machines," Energies, MDPI, vol. 14(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1394-:d:333377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.