Power Quality Disturbances Classification via Fully-Convolutional Siamese Network and k-Nearest Neighbor
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yusen Wang & Wenlong Liao & Yuqing Chang, 2018. "Gated Recurrent Unit Network-Based Short-Term Photovoltaic Forecasting," Energies, MDPI, vol. 11(8), pages 1-14, August.
- Yue Shen & Muhammad Abubakar & Hui Liu & Fida Hussain, 2019. "Power Quality Disturbance Monitoring and Classification Based on Improved PCA and Convolution Neural Network for Wind-Grid Distribution Systems," Energies, MDPI, vol. 12(7), pages 1-26, April.
- Huihui Wang & Ping Wang & Tao Liu, 2017. "Power Quality Disturbance Classification Using the S-Transform and Probabilistic Neural Network," Energies, MDPI, vol. 10(1), pages 1-19, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cheng-I Chen & Sunneng Sandino Berutu & Yeong-Chin Chen & Hao-Cheng Yang & Chung-Hsien Chen, 2022. "Regulated Two-Dimensional Deep Convolutional Neural Network-Based Power Quality Classifier for Microgrid," Energies, MDPI, vol. 15(7), pages 1-16, March.
- Shuangquan Yang & Tao Shan & Xiaomei Yang, 2025. "Interpretable DWT-1DCNN-LSTM Network for Power Quality Disturbance Classification," Energies, MDPI, vol. 18(2), pages 1-19, January.
- Artvin-Darien Gonzalez-Abreu & Roque-Alfredo Osornio-Rios & Arturo-Yosimar Jaen-Cuellar & Miguel Delgado-Prieto & Jose-Alfonso Antonino-Daviu & Athanasios Karlis, 2022. "Advances in Power Quality Analysis Techniques for Electrical Machines and Drives: A Review," Energies, MDPI, vol. 15(5), pages 1-26, March.
- Artvin-Darien Gonzalez-Abreu & Miguel Delgado-Prieto & Roque-Alfredo Osornio-Rios & Juan-Jose Saucedo-Dorantes & Rene-de-Jesus Romero-Troncoso, 2021. "A Novel Deep Learning-Based Diagnosis Method Applied to Power Quality Disturbances," Energies, MDPI, vol. 14(10), pages 1-17, May.
- Jiajun Cai & Kai Zhang & Hui Jiang, 2023. "Power Quality Disturbance Classification Based on Parallel Fusion of CNN and GRU," Energies, MDPI, vol. 16(10), pages 1-12, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Juan Carlos Bravo-Rodríguez & Francisco J. Torres & María D. Borrás, 2020. "Hybrid Machine Learning Models for Classifying Power Quality Disturbances: A Comparative Study," Energies, MDPI, vol. 13(11), pages 1-20, June.
- Pu Zhao & Qing Chen & Kongming Sun & Chuanxin Xi, 2017. "A Current Frequency Component-Based Fault-Location Method for Voltage-Source Converter-Based High-Voltage Direct Current (VSC-HVDC) Cables Using the S Transform," Energies, MDPI, vol. 10(8), pages 1-15, July.
- Paula Remigio-Carmona & Juan-José González-de-la-Rosa & Olivia Florencias-Oliveros & José-María Sierra-Fernández & Javier Fernández-Morales & Manuel-Jesús Espinosa-Gavira & Agustín Agüera-Pérez & José, 2022. "Current Status and Future Trends of Power Quality Analysis," Energies, MDPI, vol. 15(7), pages 1-18, March.
- Yue Shen & Muhammad Abubakar & Hui Liu & Fida Hussain, 2019. "Power Quality Disturbance Monitoring and Classification Based on Improved PCA and Convolution Neural Network for Wind-Grid Distribution Systems," Energies, MDPI, vol. 12(7), pages 1-26, April.
- Juan-José González de-la-Rosa & Manuel Pérez-Donsión, 2020. "Special Issue “Analysis for Power Quality Monitoring”," Energies, MDPI, vol. 13(3), pages 1-6, January.
- Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
- Leijiao Ge & Tianshuo Du & Changlu Li & Yuanliang Li & Jun Yan & Muhammad Umer Rafiq, 2022. "Virtual Collection for Distributed Photovoltaic Data: Challenges, Methodologies, and Applications," Energies, MDPI, vol. 15(23), pages 1-24, November.
- Do-In Kim, 2021. "Complementary Feature Extractions for Event Identification in Power Systems Using Multi-Channel Convolutional Neural Network," Energies, MDPI, vol. 14(15), pages 1-15, July.
- Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang, 2022. "Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method," Energies, MDPI, vol. 15(11), pages 1-21, June.
- Ying Cao & Xi Wang & Li Zhu & Hongwei Wang & Xiaoning Wang, 2023. "A Meta-Learning-Based Train Dynamic Modeling Method for Accurately Predicting Speed and Position," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
- Kewei Cai & Belema Prince Alalibo & Wenping Cao & Zheng Liu & Zhiqiang Wang & Guofeng Li, 2018. "Hybrid Approach for Detecting and Classifying Power Quality Disturbances Based on the Variational Mode Decomposition and Deep Stochastic Configuration Network," Energies, MDPI, vol. 11(11), pages 1-18, November.
- Seung Chan Jo & Young Gyu Jin & Yong Tae Yoon & Ho Chan Kim, 2021. "Methods for Integrating Extraterrestrial Radiation into Neural Network Models for Day-Ahead PV Generation Forecasting," Energies, MDPI, vol. 14(9), pages 1-18, May.
- Artvin-Darien Gonzalez-Abreu & Miguel Delgado-Prieto & Roque-Alfredo Osornio-Rios & Juan-Jose Saucedo-Dorantes & Rene-de-Jesus Romero-Troncoso, 2021. "A Novel Deep Learning-Based Diagnosis Method Applied to Power Quality Disturbances," Energies, MDPI, vol. 14(10), pages 1-17, May.
- Mohammad Taghi Sattari & Halit Apaydin & Shahaboddin Shamshirband, 2020. "Performance Evaluation of Deep Learning-Based Gated Recurrent Units (GRUs) and Tree-Based Models for Estimating ETo by Using Limited Meteorological Variables," Mathematics, MDPI, vol. 8(6), pages 1-18, June.
- Huu Khoa Minh Nguyen & Quoc-Dung Phan & Yuan-Kang Wu & Quoc-Thang Phan, 2023. "Multi-Step Wind Power Forecasting with Stacked Temporal Convolutional Network (S-TCN)," Energies, MDPI, vol. 16(9), pages 1-20, April.
- Zakarya Oubrahim & Yassine Amirat & Mohamed Benbouzid & Mohammed Ouassaid, 2023. "Power Quality Disturbances Characterization Using Signal Processing and Pattern Recognition Techniques: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-41, March.
- Ze Wu & Feifan Pan & Dandan Li & Hao He & Tiancheng Zhang & Shuyun Yang, 2022. "Prediction of Photovoltaic Power by the Informer Model Based on Convolutional Neural Network," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
- Ramadhan, Raden A.A. & Heatubun, Yosca R.J. & Tan, Sek F. & Lee, Hyun-Jin, 2021. "Comparison of physical and machine learning models for estimating solar irradiance and photovoltaic power," Renewable Energy, Elsevier, vol. 178(C), pages 1006-1019.
- Shangfu Wei & Xiaoqing Bai, 2022. "Multi-Step Short-Term Building Energy Consumption Forecasting Based on Singular Spectrum Analysis and Hybrid Neural Network," Energies, MDPI, vol. 15(5), pages 1-21, February.
More about this item
Keywords
power quality; disturbances classification; Siamese network; small sample learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4732-:d:296908. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.