IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4477-d1162000.html
   My bibliography  Save this article

The Effect of Explosions on the Protective Wall of a Containerized Hydrogen Fuel Cell System

Author

Listed:
  • Min Liu

    (Research Institute of State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310014, China)

  • Leiqi Zhang

    (Research Institute of State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310014, China)

  • Qiliang Wu

    (Research Institute of State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310014, China)

  • Yunpeng Zhang

    (Institute of Thermal Science and Technology (Institute for Advanced Technology), Shandong University, Jinan 250061, China)

  • Jiaxin Zhang

    (Institute of Thermal Science and Technology (Institute for Advanced Technology), Shandong University, Jinan 250061, China)

  • Xuefang Li

    (Institute of Thermal Science and Technology (Institute for Advanced Technology), Shandong University, Jinan 250061, China)

  • Qingxin Ba

    (School of Mechanical Engineering, Shandong University, Jinan 250061, China)

Abstract

With the development of hydrogen energy, containerized hydrogen fuel cell systems are being used in distributed energy-supply systems. Hydrogen pipelines and electronic equipment of fuel cell containers can trigger hydrogen-explosion accidents. In the present study, Computational Fluid Dynamics (CFD) software was used to calculate the affected areas of hydrogen fuel cell container-explosion accidents with and without protective walls. The protective effects were studied for protective walls at various distances and heights. The results show that strategically placing protective walls can effectively block the propagation of shock waves and flames. However, the protective wall has a limited effect on the reduction of overpressure and temperature behind the wall when the protective wall is insufficiently high. Reflected explosion shock waves and flames will cause damage to the area inside the wall when the protective wall is too close to the container. In this study, a protective wall that is 5 m away from the container and 3 m high can effectively protect the area behind the wall and prevent damage to the container due to the reflection of shock waves and flame. This paper presents a suitable protective wall setting scheme for hydrogen fuel cell containers.

Suggested Citation

  • Min Liu & Leiqi Zhang & Qiliang Wu & Yunpeng Zhang & Jiaxin Zhang & Xuefang Li & Qingxin Ba, 2023. "The Effect of Explosions on the Protective Wall of a Containerized Hydrogen Fuel Cell System," Energies, MDPI, vol. 16(11), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4477-:d:1162000
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4477/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4477/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huadao Xing & Runze Yu & Guangan Xu & Xiaodong Li & Yanyu Qiu & Derong Wang & Bin Li & Lifeng Xie, 2022. "Theoretical and Experimental Investigation of Explosion Characteristics of Hydrogen Explosion in a Closed Vessel," Energies, MDPI, vol. 15(22), pages 1-14, November.
    2. Farah Mneimneh & Hasan Ghazzawi & Mohammad Abu Hejjeh & Matteo Manganelli & Seeram Ramakrishna, 2023. "Roadmap to Achieving Sustainable Development via Green Hydrogen," Energies, MDPI, vol. 16(3), pages 1-25, January.
    3. Omer Faruk Noyan & Muhammad Mahmudul Hasan & Nezih Pala, 2023. "A Global Review of the Hydrogen Energy Eco-System," Energies, MDPI, vol. 16(3), pages 1-22, February.
    4. Remzi Can Samsun & Michael Rex & Laurent Antoni & Detlef Stolten, 2022. "Deployment of Fuel Cell Vehicles and Hydrogen Refueling Station Infrastructure: A Global Overview and Perspectives," Energies, MDPI, vol. 15(14), pages 1-34, July.
    5. Paola Russo & Alessandra De Marco & Fulvio Parisi, 2020. "Assessment of the Damage from Hydrogen Pipeline Explosions on People and Buildings," Energies, MDPI, vol. 13(19), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelo Azevedo Benetti & Florin Iov, 2023. "A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen," Energies, MDPI, vol. 16(7), pages 1-20, March.
    2. Ju-Yeol Ryu & Sungho Park & Changhyeong Lee & Seonghyeon Hwang & Jongwoong Lim, 2023. "Techno-Economic Analysis of Hydrogen–Natural Gas Blended Fuels for 400 MW Combined Cycle Power Plants (CCPPs)," Energies, MDPI, vol. 16(19), pages 1-19, September.
    3. Yunlei Lin & Yuan Zhou, 2023. "Identification of Hydrogen-Energy-Related Emerging Technologies Based on Text Mining," Sustainability, MDPI, vol. 16(1), pages 1-19, December.
    4. Matteo Genovese & David Blekhman & Michael Dray & Francesco Piraino & Petronilla Fragiacomo, 2023. "Experimental Comparison of Hydrogen Refueling with Directly Pressurized vs. Cascade Method," Energies, MDPI, vol. 16(15), pages 1-14, August.
    5. Vijai Kaarthi Visvanathan & Karthikeyan Palaniswamy & Dineshkumar Ponnaiyan & Mathan Chandran & Thanarajan Kumaresan & Jegathishkumar Ramasamy & Senthilarasu Sundaram, 2023. "Fuel Cell Products for Sustainable Transportation and Stationary Power Generation: Review on Market Perspective," Energies, MDPI, vol. 16(6), pages 1-21, March.
    6. Byoungjik Park & Yangkyun Kim & Kwanwoo Lee & Shinwon Paik & Chankyu Kang, 2021. "Risk Assessment Method Combining Independent Protection Layers (IPL) of Layer of Protection Analysis (LOPA) and RISKCURVES Software: Case Study of Hydrogen Refueling Stations in Urban Areas," Energies, MDPI, vol. 14(13), pages 1-13, July.
    7. Ján Horváth & Janka Szemesová, 2023. "Is a Carbon-Neutral Pathway in Road Transport Possible? A Case Study from Slovakia," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
    8. Omer Faruk Noyan & Muhammad Mahmudul Hasan & Nezih Pala, 2023. "A Global Review of the Hydrogen Energy Eco-System," Energies, MDPI, vol. 16(3), pages 1-22, February.
    9. Matteo Genovese & Viviana Cigolotti & Elio Jannelli & Petronilla Fragiacomo, 2023. "Hydrogen Refueling Process: Theory, Modeling, and In-Force Applications," Energies, MDPI, vol. 16(6), pages 1-31, March.
    10. Moon, Sungho & Kim, Kyungah & Seung, Hyunchan & Kim, Junghun, 2022. "Strategic analysis on effects of technologies, government policies, and consumer perceptions on diffusion of hydrogen fuel cell vehicles," Energy Economics, Elsevier, vol. 115(C).
    11. Anton Manakhov & Maxim Orlov & Mustafa Babiker & Abdulaziz S. Al-Qasim, 2022. "A Perspective on Decarbonizing Mobility: An All-Electrification vs. an All-Hydrogenization Venue," Energies, MDPI, vol. 15(15), pages 1-13, July.
    12. Giuseppe De Lorenzo & Francesco Piraino & Francesco Longo & Giovanni Tinè & Valeria Boscaino & Nicola Panzavecchia & Massimo Caccia & Petronilla Fragiacomo, 2022. "Modelling and Performance Analysis of an Autonomous Marine Vehicle Powered by a Fuel Cell Hybrid Powertrain," Energies, MDPI, vol. 15(19), pages 1-21, September.
    13. Xing Cao & Jingang Wang & Pengcheng Zhao & Haiting Xia & Yun Li & Liming Sun & Wei He, 2023. "Hydrogen Production System Using Alkaline Water Electrolysis Adapting to Fast Fluctuating Photovoltaic Power," Energies, MDPI, vol. 16(8), pages 1-13, April.
    14. Farah Mneimneh & Hasan Ghazzawi & Mohammad Abu Hejjeh & Matteo Manganelli & Seeram Ramakrishna, 2023. "Roadmap to Achieving Sustainable Development via Green Hydrogen," Energies, MDPI, vol. 16(3), pages 1-25, January.
    15. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    16. Uchendu Eugene Chigbu & Chigozie Nweke-Eze, 2023. "Green Hydrogen Production and Its Land Tenure Consequences in Africa: An Interpretive Review," Land, MDPI, vol. 12(9), pages 1-20, September.
    17. Bin Liu & Qingda Kong & Hongyu Zhu & Dongdong Zhang & Hui Hwang Goh & Thomas Wu, 2023. "Foreign Object Shading Detection in Photovoltaic Modules Based on Transfer Learning," Energies, MDPI, vol. 16(7), pages 1-14, March.
    18. Hossein Ameli & Goran Strbac & Danny Pudjianto & Mohammad Taghi Ameli, 2024. "A Review of the Role of Hydrogen in the Heat Decarbonization of Future Energy Systems: Insights and Perspectives," Energies, MDPI, vol. 17(7), pages 1-29, April.
    19. Byoungjik Park & Yangkyun Kim & Jin Ouk Park & Ohk Kun Lim, 2023. "Jet Flame Risk Analysis for Safe Response to Hydrogen Vehicle Accidents," Sustainability, MDPI, vol. 15(13), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4477-:d:1162000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.