IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p325-d1017505.html
   My bibliography  Save this article

Techno-Economic Analysis towards Full-Scale Pressure Retarded Osmosis Plants

Author

Listed:
  • Elizabeth I. Obode

    (Chemical Engineering Program, Texas A&M University at Qatar, Doha P.O. Box 23874, Qatar)

  • Ahmed Badreldin

    (Chemical Engineering Program, Texas A&M University at Qatar, Doha P.O. Box 23874, Qatar)

  • Samer Adham

    (ConocoPhillips Global Water Sustainability Center, Qatar Science & Technology Park, Doha P.O. Box 24750, Qatar)

  • Marcelo Castier

    (Chemical Engineering Program, Texas A&M University at Qatar, Doha P.O. Box 23874, Qatar
    Facultad de Ciencias de la Ingeniería, Universidad Paraguayo Alemana, San Lorenzo 2540, Paraguay)

  • Ahmed Abdel-Wahab

    (Chemical Engineering Program, Texas A&M University at Qatar, Doha P.O. Box 23874, Qatar)

Abstract

Pressure retarded osmosis (PRO) is a power generation process that harnesses the salinity gradient between two water bodies of different salinities. Using high salinity water as a draw solution, this work assesses the techno-economic feasibility of the technology to generate electricity using single and multistage systems. This work utilizes a simulator built on the rigorous Q-Electrolattice equation of state and a mass transfer model that accounts for concentration polarization, combined with the Dakota optimization tool to perform sensitivity analysis and optimization studies. The economic indicator of interest is the Levelized Cost of Electricity (LCOE), which serves to compare PRO with other sources of renewable energy. An LCOE value of USD 0.1255/kWh was obtained from the use of commercial membranes at an efficiency of 100% for the mechanical components of the PRO system. This LCOE drops to USD 0.0704/kWh when an ideal membrane is used—thus showing the improvements to economics possible with improved membrane properties. With currently obtainable membrane properties and mechanical equipment, the LCOE of a single-stage process increases to USD 0.352/kWh, which is not cost-competitive with other renewable energy sources. Setting up multistage PRO systems towards minimizing the LCOE was found to be detrimental to the net power production by the plant.

Suggested Citation

  • Elizabeth I. Obode & Ahmed Badreldin & Samer Adham & Marcelo Castier & Ahmed Abdel-Wahab, 2022. "Techno-Economic Analysis towards Full-Scale Pressure Retarded Osmosis Plants," Energies, MDPI, vol. 16(1), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:325-:d:1017505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/325/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/325/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matta, Saly M. & Selam, Muaz A. & Manzoor, Husnain & Adham, Samer & Shon, Ho Kyong & Castier, Marcelo & Abdel-Wahab, Ahmed, 2022. "Predicting the performance of spiral-wound membranes in pressure-retarded osmosis processes," Renewable Energy, Elsevier, vol. 189(C), pages 66-77.
    2. Tufa, Ramato Ashu & Pawlowski, Sylwin & Veerman, Joost & Bouzek, Karel & Fontananova, Enrica & di Profio, Gianluca & Velizarov, Svetlozar & Goulão Crespo, João & Nijmeijer, Kitty & Curcio, Efrem, 2018. "Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage," Applied Energy, Elsevier, vol. 225(C), pages 290-331.
    3. Qais A. Khasawneh & Bourhan Tashtoush & Anas Nawafleh & Bayan Kan’an, 2018. "Techno-Economic Feasibility Study of a Hypersaline Pressure-Retarded Osmosis Power Plants: Dead Sea–Red Sea Conveyor," Energies, MDPI, vol. 11(11), pages 1-17, November.
    4. Manzoor, Husnain & Selam, Muaz A. & Abdur Rahman, Fahim Bin & Adham, Samer & Castier, Marcelo & Abdel-Wahab, Ahmed, 2020. "A tool for assessing the scalability of pressure-retarded osmosis (PRO) membranes," Renewable Energy, Elsevier, vol. 149(C), pages 987-999.
    5. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    6. Sung Ho Chae & Young Mi Kim & Hosik Park & Jangwon Seo & Seung Ji Lim & Joon Ha Kim, 2019. "Modeling and Simulation Studies Analyzing the Pressure-Retarded Osmosis (PRO) and PRO-Hybridized Processes," Energies, MDPI, vol. 12(2), pages 1-38, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz-García, A. & Tadeo, F. & Nuez, I., 2023. "Role of permeability coefficients in salinity gradient energy generation by PRO systems with spiral wound membrane modules," Renewable Energy, Elsevier, vol. 215(C).
    2. Abdelkader, Bassel A. & Navas, Daniel Ruiz & Sharqawy, Mostafa H., 2023. "A novel spiral wound module design for harvesting salinity gradient energy using pressure retarded osmosis," Renewable Energy, Elsevier, vol. 203(C), pages 542-553.
    3. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    4. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    5. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    6. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    7. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    8. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    9. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    10. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).
    12. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    13. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    14. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    15. Zhang, Kaiqiang & Jia, Na & Liu, Lirong, 2019. "CO2 storage in fractured nanopores underground: Phase behaviour study," Applied Energy, Elsevier, vol. 238(C), pages 911-928.
    16. Cai, Hua & Hu, Xiaojun & Xu, Ming, 2013. "Impact of emerging clean vehicle system on water stress," Applied Energy, Elsevier, vol. 111(C), pages 644-651.
    17. Griffin, Paul A. & Jaffe, Amy Myers & Lont, David H. & Dominguez-Faus, Rosa, 2015. "Science and the stock market: Investors' recognition of unburnable carbon," Energy Economics, Elsevier, vol. 52(PA), pages 1-12.
    18. Li, Zhenpeng & Ma, Tao, 2022. "Theoretic efficiency limit and design criteria of solar photovoltaics with high visual perceptibility," Applied Energy, Elsevier, vol. 324(C).
    19. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Huang, Yuming & Zhou, Wei & Xie, Liang & Li, Jiayi & He, Yong & Chen, Shuai & Meng, Xiaoxiao & Gao, Jihui & Qin, Yukun, 2022. "Edge and defect sites in porous activated coke enable highly efficient carbon-assisted water electrolysis for energy-saving hydrogen production," Renewable Energy, Elsevier, vol. 195(C), pages 283-292.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:325-:d:1017505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.