IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3160-d802616.html
   My bibliography  Save this article

A Review of the Impact of Hydrogen Integration in Natural Gas Distribution Networks and Electric Smart Grids

Author

Listed:
  • Leonardo Vidas

    (Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal)

  • Rui Castro

    (INESC-ID/IST, University of Lisbon, 1000-029 Lisboa, Portugal)

  • Armando Pires

    (SustainRD, EST Setúbal, Polytechnic Institute of Setubal, 2914-508 Setubal, Portugal
    Centre of Technology and Systems (CTS-UNINOVA), 2829-516 Caparica, Portugal)

Abstract

Hydrogen technologies have been rapidly developing in the past few decades, pushed by governments’ road maps for sustainability and supported by a widespread need to decarbonize the global energy sector. Recent scientific progress has led to better performances and higher efficiencies of hydrogen-related technologies, so much so that their future economic viability is now rarely called into question. This article intends to study the integration of hydrogen systems in both gas and electric distribution networks. A preliminary analysis of hydrogen’s physical storage methods is given, considering both the advantages and disadvantages of each one. After examining the preeminent ways of physically storing hydrogen, this paper then contemplates two primary means of using it: integrating it in Power-to-Gas networks and utilizing it in Power-to-Power smart grids. In the former, the primary objective is the total replacement of natural gas with hydrogen through progressive blending procedures, from the transmission pipeline to the domestic burner; in the latter, the set goal is the expansion of the implementation of hydrogen systems—namely storage—in multi-microgrid networks, thus helping to decarbonize the electricity sector and reducing the impact of renewable energy’s intermittence through Demand Side Management strategies. The study concludes that hydrogen is assumed to be an energy vector that is inextricable from the necessary transition to a cleaner, more efficient, and sustainable future.

Suggested Citation

  • Leonardo Vidas & Rui Castro & Armando Pires, 2022. "A Review of the Impact of Hydrogen Integration in Natural Gas Distribution Networks and Electric Smart Grids," Energies, MDPI, vol. 15(9), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3160-:d:802616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3160/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3160/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhihong Xu & Yan Gao & Muhammad Hussain & Panhong Cheng, 2020. "Demand Side Management for Smart Grid Based on Smart Home Appliances with Renewable Energy Sources and an Energy Storage System," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-20, April.
    2. Parra, David & Valverde, Luis & Pino, F. Javier & Patel, Martin K., 2019. "A review on the role, cost and value of hydrogen energy systems for deep decarbonisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 279-294.
    3. Taamallah, S. & Vogiatzaki, K. & Alzahrani, F.M. & Mokheimer, E.M.A. & Habib, M.A. & Ghoniem, A.F., 2015. "Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations," Applied Energy, Elsevier, vol. 154(C), pages 1020-1047.
    4. Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt1804p4vw, Institute of Transportation Studies, UC Davis.
    5. Pelaez-Samaniego, Manuel Raul & Riveros-Godoy, Gustavo & Torres-Contreras, Santiago & Garcia-Perez, Tsai & Albornoz-Vintimilla, Esteban, 2014. "Production and use of electrolytic hydrogen in Ecuador towards a low carbon economy," Energy, Elsevier, vol. 64(C), pages 626-631.
    6. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah & Parastegari, Moein, 2019. "An efficient scenario-based stochastic programming method for optimal scheduling of CHP-PEMFC, WT, PV and hydrogen storage units in micro grids," Renewable Energy, Elsevier, vol. 130(C), pages 1049-1066.
    7. Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt7p3500g2, Institute of Transportation Studies, UC Davis.
    8. Ogden, Joan & Jaffe, Amy Myers & Scheitrum, Daniel & McDonald, Zane & Miller, Marshall, 2018. "Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature," Energy Policy, Elsevier, vol. 115(C), pages 317-329.
    9. Li, Bei & Roche, Robin & Paire, Damien & Miraoui, Abdellatif, 2017. "Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation," Applied Energy, Elsevier, vol. 205(C), pages 1244-1259.
    10. Victor I. Bolobov & Il’nur U. Latipov & Gregory G. Popov & George V. Buslaev & Yana V. Martynenko, 2021. "Estimation of the Influence of Compressed Hydrogen on the Mechanical Properties of Pipeline Steels," Energies, MDPI, vol. 14(19), pages 1-27, September.
    11. Chaczykowski, Maciej & Zarodkiewicz, Paweł, 2017. "Simulation of natural gas quality distribution for pipeline systems," Energy, Elsevier, vol. 134(C), pages 681-698.
    12. Finn, Paddy & Fitzpatrick, Colin, 2014. "Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing," Applied Energy, Elsevier, vol. 113(C), pages 11-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Zhu & Lanli Hu & Serhat Yüksel & Hasan Dinçer & Hüsne Karakuş & Gözde Gülseven Ubay, 2020. "Analysis of Strategic Directions in Sustainable Hydrogen Investment Decisions," Sustainability, MDPI, vol. 12(11), pages 1-19, June.
    2. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    3. Olateju, Babatunde & Kumar, Amit, 2016. "A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands," Energy, Elsevier, vol. 115(P1), pages 604-614.
    4. Rahil, Abdulla & Gammon, Rupert & Brown, Neil, 2018. "Flexible operation of electrolyser at the garage forecourt to support grid balancing and exploitation of hydrogen as a clean fuel," Research in Transportation Economics, Elsevier, vol. 70(C), pages 125-138.
    5. Davis, M. & Okunlola, A. & Di Lullo, G. & Giwa, T. & Kumar, A., 2023. "Greenhouse gas reduction potential and cost-effectiveness of economy-wide hydrogen-natural gas blending for energy end uses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wang, Danfeng & Wu, Qing, 2021. "Optimal design and techno-economic assessment of low-carbon hydrogen supply pathways for a refueling station located in Shanghai," Energy, Elsevier, vol. 237(C).
    7. Steven Jackson & Eivind Brodal, 2021. "Optimization of a Mixed Refrigerant Based H 2 Liquefaction Pre-Cooling Process and Estimate of Liquefaction Performance with Varying Ambient Temperature," Energies, MDPI, vol. 14(19), pages 1-18, September.
    8. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    9. Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.
    10. Chang, Le & Li, Zheng & Gao, Dan & Huang, He & Ni, Weidou, 2007. "Pathways for hydrogen infrastructure development in China: Integrated assessment for vehicle fuels and a case study of Beijing," Energy, Elsevier, vol. 32(11), pages 2023-2037.
    11. Lin, Zhenhong & Fan, Yueyue & Ogden, Joan M & Chen, Chien-Wei, 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California," Institute of Transportation Studies, Working Paper Series qt9mk5n8jn, Institute of Transportation Studies, UC Davis.
    12. Yongxi Huang & Yueyue Fan & Nils Johnson, 2010. "Multistage System Planning for Hydrogen Production and Distribution," Networks and Spatial Economics, Springer, vol. 10(4), pages 455-472, December.
    13. Niermann, M. & Timmerberg, S. & Drünert, S. & Kaltschmitt, M., 2021. "Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    15. Olfa Tlili & Christine Mansilla & Jochen Linβen & Markus Reuss & Thomas Grube & Martin Robinius & Jean André & Yannick Perez & Alain Le Duigou & Detlef Stolten, 2020. "Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains," Post-Print hal-02421359, HAL.
    16. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    17. Forghani, Kamran & Kia, Reza & Nejatbakhsh, Yousef, 2023. "A multi-period sustainable hydrogen supply chain model considering pipeline routing and carbon emissions: The case study of Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    18. Li, Guozhen, 2023. "The Hydrogen Fuel Pathway for Air Transportation," Institute of Transportation Studies, Working Paper Series qt3sh5x1vk, Institute of Transportation Studies, UC Davis.
    19. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    20. Lin, Zhenhong & Ogden, Joan & Fan, Yueyue & Chen, Chien-Wei, 2009. "The Fuel-Travel-Back Approach to Hydrogen Station Siting," Institute of Transportation Studies, Working Paper Series qt14p44238, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3160-:d:802616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.