IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6085-d642113.html
   My bibliography  Save this article

Estimation of the Influence of Compressed Hydrogen on the Mechanical Properties of Pipeline Steels

Author

Listed:
  • Victor I. Bolobov

    (Faculty of Mechanical Engineering, St. Petersburg Mining University, 2, 21st Line, 199106 St. Petersburg, Russia)

  • Il’nur U. Latipov

    (Department of Transport and Storage of Oil and Gas, Faculty of Oil and Gas Engineering, St. Petersburg Mining University, 2, 21st Line, 199106 St. Petersburg, Russia)

  • Gregory G. Popov

    (Department of Transport and Storage of Oil and Gas, Faculty of Oil and Gas Engineering, St. Petersburg Mining University, 2, 21st Line, 199106 St. Petersburg, Russia)

  • George V. Buslaev

    (Department of Well Drilling, Faculty of Oil and Gas Engineering, St. Petersburg Mining University, 2, 21st Line, 199106 St. Petersburg, Russia)

  • Yana V. Martynenko

    (Department of Transport and Storage of Oil and Gas, Faculty of Oil and Gas Engineering, St. Petersburg Mining University, 2, 21st Line, 199106 St. Petersburg, Russia)

Abstract

Consideration of the possibility of transporting compressed hydrogen through existing gas pipelines leads to the need to study the regularities of the effect of hydrogen on the mechanical properties of steels in relation to the conditions of their operation in pipelines (operating pressure range, stress state of the pipe metal, etc.). This article provides an overview of the types of influence of hydrogen on the mechanical properties of steels, including those used for the manufacture of pipelines. The effect of elastic and plastic deformations on the intensity of hydrogen saturation of steels and changes in their strength and plastic deformations is analyzed. An assessment of the potential losses of transported hydrogen through the pipeline wall as a result of diffusion has been made. The main issues that need to be solved for the development of a scientifically grounded conclusion on the possibility of using existing gas pipelines for the transportation of compressed hydrogen are outlined.

Suggested Citation

  • Victor I. Bolobov & Il’nur U. Latipov & Gregory G. Popov & George V. Buslaev & Yana V. Martynenko, 2021. "Estimation of the Influence of Compressed Hydrogen on the Mechanical Properties of Pipeline Steels," Energies, MDPI, vol. 14(19), pages 1-27, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6085-:d:642113
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6085/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. -, 2015. "Requirements for the materials," Вестник УГУЭС. Наука, образование, экономика. Серия: Экономика, CyberLeninka;Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Уфимский государственный университет экономики и сервиса», issue 1 (11), pages 203-204.
    2. Jean André & Stéphane Auray & Daniel de Wolf & Mohamed-Mahmoud Memmah & Antoine Simonnet, 2014. "Time development of new hydrogen transmission pipeline networks for France," Post-Print halshs-02396799, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dmitry Radoushinsky & Kirill Gogolinskiy & Yousef Dellal & Ivan Sytko & Abhishek Joshi, 2023. "Actual Quality Changes in Natural Resource and Gas Grid Use in Prospective Hydrogen Technology Roll-Out in the World and Russia," Sustainability, MDPI, vol. 15(20), pages 1-31, October.
    2. Alexander I. Balitskii & Vitaly V. Dmytryk & Lyubomir M. Ivaskevich & Olexiy A. Balitskii & Alyona V. Glushko & Lev B. Medovar & Karol F. Abramek & Ganna P. Stovpchenko & Jacek J. Eliasz & Marcin A. K, 2022. "Improvement of the Mechanical Characteristics, Hydrogen Crack Resistance and Durability of Turbine Rotor Steels Welded Joints," Energies, MDPI, vol. 15(16), pages 1-23, August.
    3. Vadim Fetisov & Aleksey V. Shalygin & Svetlana A. Modestova & Vladimir K. Tyan & Changjin Shao, 2022. "Development of a Numerical Method for Calculating a Gas Supply System during a Period of Change in Thermal Loads," Energies, MDPI, vol. 16(1), pages 1-16, December.
    4. Leonardo Vidas & Rui Castro & Armando Pires, 2022. "A Review of the Impact of Hydrogen Integration in Natural Gas Distribution Networks and Electric Smart Grids," Energies, MDPI, vol. 15(9), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel de Wolf, 2017. "Mathematical Properties of Formulations of the Gas Transmission Problem," Post-Print halshs-02396747, HAL.
    2. Daniel de Wolf & Yves Smeers, 2023. "Comparison of Battery Electric Vehicles and Fuel Cell Vehicles [Comparaison des véhicules électriques à batterie et à hydrogène]," Post-Print hal-04367656, HAL.
    3. Adrian Neacsa & Cristian Nicolae Eparu & Cașen Panaitescu & Doru Bogdan Stoica & Bogdan Ionete & Alina Prundurel & Sorin Gal, 2023. "Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society," Energies, MDPI, vol. 16(15), pages 1-38, August.
    4. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    5. Olfa Tlili & Christine Mansilla & Jochen Linβen & Markus Reuss & Thomas Grube & Martin Robinius & Jean André & Yannick Perez & Alain Le Duigou & Detlef Stolten, 2020. "Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains," Post-Print hal-02421359, HAL.
    6. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    7. d'Amore-Domenech, Rafael & Meca, Vladimir L. & Pollet, Bruno G. & Leo, Teresa J., 2023. "On the bulk transport of green hydrogen at sea: Comparison between submarine pipeline and compressed and liquefied transport by ship," Energy, Elsevier, vol. 267(C).
    8. van Leeuwen, Charlotte & Mulder, Machiel, 2018. "Power-to-gas in electricity markets dominated by renewables," Applied Energy, Elsevier, vol. 232(C), pages 258-272.
    9. Madina E. Isametova & Rollan Nussipali & Nikita V. Martyushev & Boris V. Malozyomov & Egor A. Efremenkov & Aysen Isametov, 2022. "Mathematical Modeling of the Reliability of Polymer Composite Materials," Mathematics, MDPI, vol. 10(21), pages 1-19, October.
    10. Nicolle, Adrien & Massol, Olivier, 2023. "Build more and regret less: Oversizing H2 and CCS pipeline systems under uncertainty," Energy Policy, Elsevier, vol. 179(C).
    11. Agnieszka Cholewa-Wójcik & Agnieszka Kawecka & Carlo Ingrao & Valentina Siracusa, 2019. "Socio-Economic Requirements as a Fundament of Innovation in Food Packaging," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 15(1), pages 231-256.
    12. Seo, Seung-Kwon & Yun, Dong-Yeol & Lee, Chul-Jin, 2020. "Design and optimization of a hydrogen supply chain using a centralized storage model," Applied Energy, Elsevier, vol. 262(C).
    13. Markus Reuß & Paris Dimos & Aline Léon & Thomas Grube & Martin Robinius & Detlef Stolten, 2021. "Hydrogen Road Transport Analysis in the Energy System: A Case Study for Germany through 2050," Energies, MDPI, vol. 14(11), pages 1-17, May.
    14. Ibrahim, Omar S. & Singlitico, Alessandro & Proskovics, Roberts & McDonagh, Shane & Desmond, Cian & Murphy, Jerry D., 2022. "Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Sungmi Bae & Eunhan Lee & Jinil Han, 2020. "Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    16. Lai, Y.Y. & Christley, E. & Kulanovic, A. & Teng, C.C. & Björklund, A. & Nordensvärd, J. & Karakaya, E. & Urban, F., 2022. "Analysing the opportunities and challenges for mitigating the climate impact of aviation: A narrative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Amin Lahnaoui & Christina Wulf & Didier Dalmazzone, 2021. "Optimization of Hydrogen Cost and Transport Technology in France and Germany for Various Production and Demand Scenarios," Energies, MDPI, vol. 14(3), pages 1-21, January.
    18. Li, Lei & Manier, Hervé & Manier, Marie-Ange, 2019. "Hydrogen supply chain network design: An optimization-oriented review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 342-360.
    19. Lahnaoui, Amin & Wulf, Christina & Heinrichs, Heidi & Dalmazzone, Didier, 2018. "Optimizing hydrogen transportation system for mobility by minimizing the cost of transportation via compressed gas truck in North Rhine-Westphalia," Applied Energy, Elsevier, vol. 223(C), pages 317-328.
    20. Anna Burkowicz & Krzysztof Galos & Katarzyna Guzik, 2020. "The Resource Base of Silica Glass Sand versus Glass Industry Development: The Case of Poland," Resources, MDPI, vol. 9(11), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6085-:d:642113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.