IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p6006-d892119.html
   My bibliography  Save this article

Improvement of the Mechanical Characteristics, Hydrogen Crack Resistance and Durability of Turbine Rotor Steels Welded Joints

Author

Listed:
  • Alexander I. Balitskii

    (Department of Strength of the Materials and Structures in Hydrogen-Containing Environments, Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine, 79-601 Lviv, Ukraine
    Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, 70-310 Szczecin, Poland)

  • Vitaly V. Dmytryk

    (Welding Department, National Technical University «Kharkiv Polytechnic Institute», 61-000 Kharkiv, Ukraine)

  • Lyubomir M. Ivaskevich

    (Department of Strength of the Materials and Structures in Hydrogen-Containing Environments, Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine, 79-601 Lviv, Ukraine)

  • Olexiy A. Balitskii

    (Adolphe Merkle Institute, University of Fribourg, Chemin Des Verdiers 4, 1700 Friborg, Switzerland)

  • Alyona V. Glushko

    (Welding Department, National Technical University «Kharkiv Polytechnic Institute», 61-000 Kharkiv, Ukraine)

  • Lev B. Medovar

    (Department of Physical and Metallurgical Problems Electroslag Technologies, E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 03-150 Kyiv, Ukraine
    Private Engineering Company ‘ELMET-ROLL’, P.O. Box 259, 03-150 Kyiv, Ukraine)

  • Karol F. Abramek

    (Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, 70-310 Szczecin, Poland)

  • Ganna P. Stovpchenko

    (Department of Physical and Metallurgical Problems Electroslag Technologies, E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 03-150 Kyiv, Ukraine
    Private Engineering Company ‘ELMET-ROLL’, P.O. Box 259, 03-150 Kyiv, Ukraine)

  • Jacek J. Eliasz

    (Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, 70-310 Szczecin, Poland)

  • Marcin A. Krolikowski

    (Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, 70-310 Szczecin, Poland)

Abstract

This article is devoted to the following issues: calculating the values of temperatures obtained by simulating welding heating and the subsequent implementation of the welding process at the given mode parameters made it possible to obtain a welded joint of the rotor with an improved initial structure and increased mechanical properties, hydrogen resistance and durability by up to 10–15%; simulating welding heating in the areas of fusion, the overheating and normalization of the HAZ and the formation of austenite grains; specified welding heating creates the conditions for the formation of new products of austenite decomposition in the form of sorbitol in the area of the incomplete recrystallization of the HAZ. In air and gaseous hydrogen, the destruction of the combined joints took place on the weld metal, as well as on the fusion areas, the overheating and the incomplete recrystallization of the HAZ of 20H3NMFA steel as the base metal. Structural materials have a relatively low strength and high fracture toughness in air. This is manifested in a significant reduction in the elongation ( δ ), the area ( ψ ) and critical stress intensity factor ( K I c ) of welded joints and the endurance limit of cylindrical smooth rotor steel specimens, which were cut from transverse templates. Welded joints in the whole range of load amplitudes are sensitive to the action of hydrogen.

Suggested Citation

  • Alexander I. Balitskii & Vitaly V. Dmytryk & Lyubomir M. Ivaskevich & Olexiy A. Balitskii & Alyona V. Glushko & Lev B. Medovar & Karol F. Abramek & Ganna P. Stovpchenko & Jacek J. Eliasz & Marcin A. K, 2022. "Improvement of the Mechanical Characteristics, Hydrogen Crack Resistance and Durability of Turbine Rotor Steels Welded Joints," Energies, MDPI, vol. 15(16), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6006-:d:892119
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/6006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/6006/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krzysztof Górecki & Krzysztof Posobkiewicz, 2022. "Cooling Systems of Power Semiconductor Devices—A Review," Energies, MDPI, vol. 15(13), pages 1-29, June.
    2. Carl E. Renshaw & Erland M. Schulson, 2001. "Universal behaviour in compressive failure of brittle materials," Nature, Nature, vol. 412(6850), pages 897-900, August.
    3. Enzo Galloni & Davide Lanni & Gustavo Fontana & Gabriele D’Antuono & Simone Stabile, 2022. "Performance Estimation of a Downsized SI Engine Running with Hydrogen," Energies, MDPI, vol. 15(13), pages 1-12, June.
    4. Huijun Feng & Lingen Chen & Wei Tang & Yanlin Ge, 2022. "Optimal Design of a Dual-Pressure Steam Turbine for Rankine Cycle Based on Constructal Theory," Energies, MDPI, vol. 15(13), pages 1-20, July.
    5. Xin Guo & Liangwei Xia & Guangbo Zhao & Guohua Wei & Yongjie Wang & Yaning Yin & Jianming Guo & Xiaohan Ren, 2022. "Steam Temperature Characteristics in Boiler Water Wall Tubes Based on Furnace CFD and Hydrodynamic Coupling Model," Energies, MDPI, vol. 15(13), pages 1-28, June.
    6. Marzena Frankowska & Marta Mańkowska & Marcin Rabe & Andrzej Rzeczycki & Elżbieta Szaruga, 2022. "Structural Model of Power Grid Stabilization in the Green Hydrogen Supply Chain System—Conceptual Assumptions," Energies, MDPI, vol. 15(2), pages 1-14, January.
    7. Jörg Leicher & Johannes Schaffert & Hristina Cigarida & Eren Tali & Frank Burmeister & Anne Giese & Rolf Albus & Klaus Görner & Stéphane Carpentier & Patrick Milin & Jean Schweitzer, 2022. "The Impact of Hydrogen Admixture into Natural Gas on Residential and Commercial Gas Appliances," Energies, MDPI, vol. 15(3), pages 1-13, January.
    8. Marzena Frankowska & Krzysztof Błoński & Marta Mańkowska & Andrzej Rzeczycki, 2022. "Research on the Concept of Hydrogen Supply Chains and Power Grids Powered by Renewable Energy Sources: A Scoping Review with the Use of Text Mining," Energies, MDPI, vol. 15(3), pages 1-26, January.
    9. Wojciech Drożdż & Filip Elżanowski & Jakub Dowejko & Bartosz Brożyński, 2021. "Hydrogen Technology on the Polish Electromobility Market. Legal, Economic, and Social Aspects," Energies, MDPI, vol. 14(9), pages 1-26, April.
    10. Victor I. Bolobov & Il’nur U. Latipov & Gregory G. Popov & George V. Buslaev & Yana V. Martynenko, 2021. "Estimation of the Influence of Compressed Hydrogen on the Mechanical Properties of Pipeline Steels," Energies, MDPI, vol. 14(19), pages 1-27, September.
    11. Jonathan Velasco Costa & Diogo F. F. da Silva & Paulo J. Costa Branco, 2022. "Large-Power Transformers: Time Now for Addressing Their Monitoring and Failure Investigation Techniques," Energies, MDPI, vol. 15(13), pages 1-59, June.
    12. Liang Lu & Minyan Zhu & Haijun Wu & Jianzhong Wu, 2022. "A Review and Case Analysis on Biaxial Synchronous Loading Technology and Fast Moment-Matching Methods for Fatigue Tests of Wind Turbine Blades," Energies, MDPI, vol. 15(13), pages 1-34, July.
    13. Piotr Wróblewski & Wojciech Drożdż & Wojciech Lewicki & Jakub Dowejko, 2021. "Total Cost of Ownership and Its Potential Consequences for the Development of the Hydrogen Fuel Cell Powered Vehicle Market in Poland," Energies, MDPI, vol. 14(8), pages 1-25, April.
    14. Nithin Mukundakumar & Rob Bastiaans, 2022. "DNS Study of Spherically Expanding Premixed Turbulent Ammonia-Hydrogen Flame Kernels, Effect of Equivalence Ratio and Hydrogen Content," Energies, MDPI, vol. 15(13), pages 1-16, June.
    15. Anjun Jiao & Shixiang Tian & Huaying Lin, 2022. "Study on Crack Penetration Induced by Fatigue Damage of Low Permeability Coal Seam under Cyclic Loading," Energies, MDPI, vol. 15(13), pages 1-20, June.
    16. João Pacheco & Francisco Pimenta & Sérgio Pereira & Álvaro Cunha & Filipe Magalhães, 2022. "Fatigue Assessment of Wind Turbine Towers: Review of Processing Strategies with Illustrative Case Study," Energies, MDPI, vol. 15(13), pages 1-25, June.
    17. Umair Yaqub Qazi, 2022. "Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities," Energies, MDPI, vol. 15(13), pages 1-40, June.
    18. Yingying Wang & Cong Wang & Guoheng Liu & Chong Zhang & Jianchang Li, 2022. "An Assessment Method of Sealing Performance and Stress Intensity Factors at Crack Tip of Subsea Connector Metal Sealing Rings," Energies, MDPI, vol. 15(13), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander I. Balitskii & Yuliia H. Kvasnytska & Lyubomir M. Ivaskevych & Kateryna H. Kvasnytska & Olexiy A. Balitskii & Inna A. Shalevska & Oleg Y. Shynskii & Jaroslaw M. Jaworski & Jakub M. Dowejko, 2023. "Hydrogen and Corrosion Resistance of Nickel Superalloys for Gas Turbines, Engines Cooled Blades," Energies, MDPI, vol. 16(3), pages 1-15, January.
    2. Alexander I. Balitskii & Maria R. Havrilyuk & Valentina O. Balitska & Valeriі O. Kolesnikov & Ljubomyr M. Ivaskevych, 2023. "Increasing Turbine Hall Safety by Using Fire-Resistant, Hydrogen-Containing Lubricant Cooling Liquid for Rotor Steel Mechanical Treatment," Energies, MDPI, vol. 16(1), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marzena Frankowska & Andrzej Rzeczycki & Mariusz Sowa & Wojciech Drożdż, 2022. "Functional Model of Power Grid Stabilization in the Green Hydrogen Supply Chain System—Conceptual Assumptions," Energies, MDPI, vol. 16(1), pages 1-16, December.
    2. Małgorzata Jastrzębska, 2022. "Installation’s Conception in the Field of Renewable Energy Sources for the Needs of the Silesian Botanical Garden," Energies, MDPI, vol. 15(18), pages 1-28, September.
    3. Tomasz Jałowiec & Dariusz Grala & Piotr Maśloch & Henryk Wojtaszek & Grzegorz Maśloch & Agnieszka Wójcik-Czerniawska, 2022. "Analysis of the Implementation of Functional Hydrogen Assumptions in Poland and Germany," Energies, MDPI, vol. 15(22), pages 1-25, November.
    4. Jiwon Yu & Young Jae Han & Hyewon Yang & Sugil Lee & Gildong Kim & Chulung Lee, 2022. "Promising Technology Analysis and Patent Roadmap Development in the Hydrogen Supply Chain," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    5. Vadim Fetisov & Aleksey V. Shalygin & Svetlana A. Modestova & Vladimir K. Tyan & Changjin Shao, 2022. "Development of a Numerical Method for Calculating a Gas Supply System during a Period of Change in Thermal Loads," Energies, MDPI, vol. 16(1), pages 1-16, December.
    6. Adrian Neacsa & Cristian Nicolae Eparu & Cașen Panaitescu & Doru Bogdan Stoica & Bogdan Ionete & Alina Prundurel & Sorin Gal, 2023. "Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society," Energies, MDPI, vol. 16(15), pages 1-38, August.
    7. Niu, Jintao & Wang, Jiansheng & Liu, Xueling, 2023. "Thermodynamic and economic analysis of organic Rankine cycle combined with flash cycle and ejector," Energy, Elsevier, vol. 282(C).
    8. Despoina Kothona & Aggelos S. Bouhouras, 2022. "A Two-Stage EV Charging Planning and Network Reconfiguration Methodology towards Power Loss Minimization in Low and Medium Voltage Distribution Networks," Energies, MDPI, vol. 15(10), pages 1-17, May.
    9. Oleg A. Kolenchukov & Kirill A. Bashmur & Vladimir V. Bukhtoyarov & Sergei O. Kurashkin & Vadim S. Tynchenko & Elena V. Tsygankova & Roman B. Sergienko & Vladislav V. Kukartsev, 2022. "Experimental Study of Oil Non-Condensable Gas Pyrolysis in a Stirred-Tank Reactor for Catalysis of Hydrogen and Hydrogen-Containing Mixtures Production," Energies, MDPI, vol. 15(22), pages 1-16, November.
    10. Jakub Horák & Michaela Jannová, 2023. "Predicting the Oil Price Movement in Commodity Markets in Global Economic Meltdowns," Forecasting, MDPI, vol. 5(2), pages 1-16, March.
    11. David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge Juan Blanes-Peiró, 2021. "Contribution of Driving Efficiency to Vehicle-to-Building," Energies, MDPI, vol. 14(12), pages 1-30, June.
    12. Mariusz Niekurzak, 2021. "The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions," Energies, MDPI, vol. 14(22), pages 1-17, November.
    13. Maria Cieśla & Elżbieta Macioszek, 2022. "The Perspective Projects Promoting Sustainable Mobility by Active Travel to School on the Example of the Southern Poland Region," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    14. Mohsen Fallah Vostakola & Hasan Ozcan & Rami S. El-Emam & Bahman Amini Horri, 2023. "Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production," Energies, MDPI, vol. 16(8), pages 1-50, April.
    15. Mao, Liangjie & Wei, Changjiang & Zeng, Song & Cai, Mingjie, 2023. "Heat transfer mechanism of cold-water pipe in ocean thermal energy conversion system," Energy, Elsevier, vol. 269(C).
    16. Linus Yinn Leng Ang & Fangsen Cui & Kian-Meng Lim & Heow Pueh Lee, 2023. "A Systematic Review of Emerging Ventilated Acoustic Metamaterials for Noise Control," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    17. Schrotenboer, Albert H. & Veenstra, Arjen A.T. & uit het Broek, Michiel A.J. & Ursavas, Evrim, 2022. "A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Aleksander Mazurkow & Wojciech Homik & Wojciech Lewicki & Zbigniew Łosiewicz, 2023. "Evaluation of Selected Dynamic Parameters of Rotating Turbocharger Units Based on Comparative Model and Bench Tests," Energies, MDPI, vol. 16(14), pages 1-18, July.
    19. Devinder Mahajan & Kun Tan & T. Venkatesh & Pradheep Kileti & Clive R. Clayton, 2022. "Hydrogen Blending in Gas Pipeline Networks—A Review," Energies, MDPI, vol. 15(10), pages 1-32, May.
    20. Emigdio Chavez-Angel & Alejandro Castro-Alvarez & Nicolas Sapunar & Francisco Henríquez & Javier Saavedra & Sebastián Rodríguez & Iván Cornejo & Lindley Maxwell, 2023. "Exploring the Potential of Green Hydrogen Production and Application in the Antofagasta Region of Chile," Energies, MDPI, vol. 16(11), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6006-:d:892119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.