IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2383-d778597.html
   My bibliography  Save this article

The Route from Green H 2 Production through Bioethanol Reforming to CO 2 Catalytic Conversion: A Review

Author

Listed:
  • Eugenio Meloni

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy)

  • Marco Martino

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy)

  • Giuseppina Iervolino

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy)

  • Concetta Ruocco

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy)

  • Simona Renda

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy)

  • Giovanni Festa

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy)

  • Vincenzo Palma

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy)

Abstract

Currently, a progressively different approach to the generation of power and the production of fuels for the automotive sector as well as for domestic applications is being taken. As a result, research on the feasibility of applying renewable energy sources to the present energy scenario has been progressively growing, aiming to reduce greenhouse gas emissions. Following more than one approach, the integration of renewables mainly involves the utilization of biomass-derived raw material and the combination of power generated via clean sources with conventional power generation systems. The aim of this review article is to provide a satisfactory overview of the most recent progress in the catalysis of hydrogen production through sustainable reforming and CO 2 utilization. In particular, attention is focused on the route that, starting from bioethanol reforming for H 2 production, leads to the use of the produced CO 2 for different purposes and by means of different catalytic processes, passing through the water–gas shift stage. The newest approaches reported in the literature are reviewed, showing that it is possible to successfully produce “green” and sustainable hydrogen, which can represent a power storage technology, and its utilization is a strategy for the integration of renewables into the power generation scenario. Moreover, this hydrogen may be used for CO 2 catalytic conversion to hydrocarbons, thus giving CO 2 added value.

Suggested Citation

  • Eugenio Meloni & Marco Martino & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Vincenzo Palma, 2022. "The Route from Green H 2 Production through Bioethanol Reforming to CO 2 Catalytic Conversion: A Review," Energies, MDPI, vol. 15(7), pages 1-36, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2383-:d:778597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2383/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2383/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ekaterina Matus & Olga Sukhova & Ilyas Ismagilov & Mikhail Kerzhentsev & Olga Stonkus & Zinfer Ismagilov, 2021. "Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion," Energies, MDPI, vol. 14(16), pages 1-16, August.
    2. Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
    3. Elena Rozzi & Francesco Demetrio Minuto & Andrea Lanzini & Pierluigi Leone, 2020. "Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses," Energies, MDPI, vol. 13(2), pages 1-96, January.
    4. Vincenzo Palma & Concetta Ruocco & Eugenio Meloni & Antonio Ricca, 2017. "Influence of Catalytic Formulation and Operative Conditions on Coke Deposition over CeO 2 -SiO 2 Based Catalysts for Ethanol Reforming," Energies, MDPI, vol. 10(7), pages 1-13, July.
    5. Ruocco, Concetta & Palma, Vincenzo & Cortese, Marta & Martino, Marco, 2022. "Stability of bimetallic Ni/CeO2–SiO2 catalysts during fuel grade bioethanol reforming in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 182(C), pages 913-922.
    6. Pal, D.B. & Chand, R. & Upadhyay, S.N. & Mishra, P.K., 2018. "Performance of water gas shift reaction catalysts: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 549-565.
    7. Nestor Sanchez & Ruth Yolanda Ruiz & Nicolas Infante & Martha Cobo, 2017. "Bioethanol Production from Cachaza as Hydrogen Feedstock: Effect of Ammonium Sulfate during Fermentation," Energies, MDPI, vol. 10(12), pages 1-16, December.
    8. Sonja Renssen, 2020. "The hydrogen solution?," Nature Climate Change, Nature, vol. 10(9), pages 799-801, September.
    9. Suaad S. Al-Zakwani & Azadeh Maroufmashat & Abdelkader Mazouz & Michael Fowler & Ali Elkamel, 2019. "Allocation of Ontario’s Surplus Electricity to Different Power-to-Gas Applications," Energies, MDPI, vol. 12(14), pages 1-18, July.
    10. Elena Rozzi & Francesco Demetrio Minuto & Andrea Lanzini & Pierluigi Leone, 2020. "Addendum: Rozzi, E.; Minuto, F.D.; Lanzini, A.; Leone, P. Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses. Energies 2020, 13, ," Energies, MDPI, vol. 13(5), pages 1-1, March.
    11. Yuanyuan Li & Matthew Kottwitz & Joshua L. Vincent & Michael J. Enright & Zongyuan Liu & Lihua Zhang & Jiahao Huang & Sanjaya D. Senanayake & Wei-Chang D. Yang & Peter A. Crozier & Ralph G. Nuzzo & An, 2021. "Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Sharma, Yogesh Chandra & Kumar, Ashutosh & Prasad, Ram & Upadhyay, Siddh Nath, 2017. "Ethanol steam reforming for hydrogen production: Latest and effective catalyst modification strategies to minimize carbonaceous deactivation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 89-103.
    13. Navarro, Juan C. & Centeno, Miguel A. & Laguna, Oscar H. & Odriozola, Jose A., 2020. "Ru–Ni/MgAl2O4 structured catalyst for CO2 methanation," Renewable Energy, Elsevier, vol. 161(C), pages 120-132.
    14. Chen, Wei-Hsin & Chen, Chia-Yang, 2020. "Water gas shift reaction for hydrogen production and carbon dioxide capture: A review," Applied Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meloni, Eugenio & Martino, Marco & Palma, Vincenzo, 2022. "Microwave assisted steam reforming in a high efficiency catalytic reactor," Renewable Energy, Elsevier, vol. 197(C), pages 893-901.
    2. Vladislav Sadykov, 2023. "Advances in Hydrogen and Syngas Generation," Energies, MDPI, vol. 16(7), pages 1-4, March.
    3. Nadaleti, Willian Cézar & Cardozo, Emanuélle & Bittencourt Machado, Jones & Maximilla Pereira, Peterson & Costa dos Santos, Maele & Gomes de Souza, Eduarda & Haertel, Paula & Kunde Correa, Erico & Vie, 2023. "Hydrogen and electricity potential generation from rice husks and persiculture biomass in Rio Grande do Sul, Brazil," Renewable Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Bogdan Ulejczyk & Łukasz Nogal & Michał Młotek & Krzysztof Krawczyk, 2022. "Efficient Plasma Technology for the Production of Green Hydrogen from Ethanol and Water," Energies, MDPI, vol. 15(8), pages 1-14, April.
    3. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
    4. Deng, Yimin & Li, Shuo & Appels, Lise & Zhang, Huili & Sweygers, Nick & Baeyens, Jan & Dewil, Raf, 2023. "Steam reforming of ethanol by non-noble metal catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    5. Khatiwada, Dilip & Vasudevan, Rohan Adithya & Santos, Bruno Henrique, 2022. "Decarbonization of natural gas systems in the EU – Costs, barriers, and constraints of hydrogen production with a case study in Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Emigdio Chavez-Angel & Alejandro Castro-Alvarez & Nicolas Sapunar & Francisco Henríquez & Javier Saavedra & Sebastián Rodríguez & Iván Cornejo & Lindley Maxwell, 2023. "Exploring the Potential of Green Hydrogen Production and Application in the Antofagasta Region of Chile," Energies, MDPI, vol. 16(11), pages 1-12, June.
    7. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2020. "Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China," Energy, Elsevier, vol. 209(C).
    8. Xavier Rixhon & Gauthier Limpens & Diederik Coppitters & Hervé Jeanmart & Francesco Contino, 2021. "The Role of Electrofuels under Uncertainties for the Belgian Energy Transition," Energies, MDPI, vol. 14(13), pages 1-23, July.
    9. Kristofor R. Brye & Niyi S. Omidire & Leah English & Ranjan Parajuli & Laszlo Kekedy-Nagy & Ruhi Sultana & Jennie Popp & Greg Thoma & Trenton L. Roberts & Lauren F. Greenlee, 2022. "Assessment of Struvite as an Alternative Sources of Fertilizer-Phosphorus for Flood-Irrigated Rice," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
    10. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
    11. Nastasi, Benedetto & Mazzoni, Stefano & Groppi, Daniele & Romagnoli, Alessandro & Astiaso Garcia, Davide, 2021. "Optimized integration of Hydrogen technologies in Island energy systems," Renewable Energy, Elsevier, vol. 174(C), pages 850-864.
    12. Tagliapietra, Simone & Wolff, Guntram B., 2021. "Conditions are ideal for a new climate club," Energy Policy, Elsevier, vol. 158(C).
    13. De Angelis, Paolo & Tuninetti, Marta & Bergamasco, Luca & Calianno, Luca & Asinari, Pietro & Laio, Francesco & Fasano, Matteo, 2021. "Data-driven appraisal of renewable energy potentials for sustainable freshwater production in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Junyang Ding & Wenxian Liu & Shusheng Zhang & Jun Luo & Xijun Liu, 2023. "A Mini Review: Recent Advances in Asymmetrically Coordinated Atom Sites for High-Efficiency Hydrogen Evolution Reaction," Energies, MDPI, vol. 16(6), pages 1-18, March.
    15. Ratikorn Sornumpol & Dang Saebea & Amornchai Arpornwichanop & Yaneeporn Patcharavorachot, 2023. "Process Optimization and CO 2 Emission Analysis of Coal/Biomass Gasification Integrated with a Chemical Looping Process," Energies, MDPI, vol. 16(6), pages 1-17, March.
    16. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    17. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    18. Guido Busca, 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering," Energies, MDPI, vol. 17(14), pages 1-32, July.
    19. Michael Carus & Lara Dammer & Achim Raschka & Pia Skoczinski, 2020. "Renewable carbon: Key to a sustainable and future‐oriented chemical and plastic industry: Definition, strategy, measures and potential," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 488-505, June.
    20. Satinover, Scott J. & Schell, Dan & Borole, Abhijeet P., 2020. "Achieving high hydrogen productivities of 20 L/L-day via microbial electrolysis of corn stover fermentation products," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2383-:d:778597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.