IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2664-d1095199.html
   My bibliography  Save this article

A Mini Review: Recent Advances in Asymmetrically Coordinated Atom Sites for High-Efficiency Hydrogen Evolution Reaction

Author

Listed:
  • Junyang Ding

    (Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
    State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resource, Environments and Materials, Nanning 530004, China)

  • Wenxian Liu

    (College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China)

  • Shusheng Zhang

    (College of Chemistry, Zhengzhou University, Zhengzhou 450001, China)

  • Jun Luo

    (Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
    Shensi Laboratory, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China)

  • Xijun Liu

    (State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resource, Environments and Materials, Nanning 530004, China)

Abstract

Energy is the substance foundation of human society. Single−atom catalysts (SACs) have emerged as promising electrode materials in the energy field owing to their unique characteristics. It was demonstrated that the hydrogen evolution reaction (HER) performance of SACs relies on the metal−centric species and the corresponding local coordination engineering. Herein, the recent progress relating to asymmetric atomic catalysts for the HER is reviewed, including low coordination, heteroatomic coordination, and bimetallic coordination. In addition, the connection between the coordination structures and the presented electrocatalytic performance was discussed. The main challenges that need to be addressed for the asymmetric atomic catalysts in the HER are summarized. Finally, some insights into the development of high−quality asymmetric atomic catalysts are included.

Suggested Citation

  • Junyang Ding & Wenxian Liu & Shusheng Zhang & Jun Luo & Xijun Liu, 2023. "A Mini Review: Recent Advances in Asymmetrically Coordinated Atom Sites for High-Efficiency Hydrogen Evolution Reaction," Energies, MDPI, vol. 16(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2664-:d:1095199
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elena Rozzi & Francesco Demetrio Minuto & Andrea Lanzini & Pierluigi Leone, 2020. "Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses," Energies, MDPI, vol. 13(2), pages 1-96, January.
    2. Konstantin S. Grishakov & Konstantin P. Katin & Alexey I. Kochaev & Savas Kaya & Margarita A. Gimaldinova & Mikhail M. Maslov, 2021. "Ab initio Study of Hydrogen Adsorption on Metal-Decorated Borophene-Graphene Bilayer," Energies, MDPI, vol. 14(9), pages 1-8, April.
    3. Elena Rozzi & Francesco Demetrio Minuto & Andrea Lanzini & Pierluigi Leone, 2020. "Addendum: Rozzi, E.; Minuto, F.D.; Lanzini, A.; Leone, P. Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses. Energies 2020, 13, ," Energies, MDPI, vol. 13(5), pages 1-1, March.
    4. Ahmed M. Agwa & Attia A. El-Fergany & Gamal M. Sarhan, 2019. "Steady-State Modeling of Fuel Cells Based on Atom Search Optimizer," Energies, MDPI, vol. 12(10), pages 1-14, May.
    5. Daobin Liu & Xiyu Li & Shuangming Chen & Huan Yan & Changda Wang & Chuanqiang Wu & Yasir A. Haleem & Sai Duan & Junling Lu & Binghui Ge & Pulickel M. Ajayan & Yi Luo & Jun Jiang & Li Song, 2019. "Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution," Nature Energy, Nature, vol. 4(6), pages 512-518, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walid Tahri & Xu Zhou & Rashid Khan & Muhammad Sajid, 2023. "Recent Trends in Transition Metal Phosphide (TMP)-Based Seawater Electrolysis for Hydrogen Evolution," Sustainability, MDPI, vol. 15(19), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eugenio Meloni & Marco Martino & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Vincenzo Palma, 2022. "The Route from Green H 2 Production through Bioethanol Reforming to CO 2 Catalytic Conversion: A Review," Energies, MDPI, vol. 15(7), pages 1-36, March.
    2. Emigdio Chavez-Angel & Alejandro Castro-Alvarez & Nicolas Sapunar & Francisco Henríquez & Javier Saavedra & Sebastián Rodríguez & Iván Cornejo & Lindley Maxwell, 2023. "Exploring the Potential of Green Hydrogen Production and Application in the Antofagasta Region of Chile," Energies, MDPI, vol. 16(11), pages 1-12, June.
    3. Xavier Rixhon & Gauthier Limpens & Diederik Coppitters & Hervé Jeanmart & Francesco Contino, 2021. "The Role of Electrofuels under Uncertainties for the Belgian Energy Transition," Energies, MDPI, vol. 14(13), pages 1-23, July.
    4. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
    5. Khatiwada, Dilip & Vasudevan, Rohan Adithya & Santos, Bruno Henrique, 2022. "Decarbonization of natural gas systems in the EU – Costs, barriers, and constraints of hydrogen production with a case study in Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Kristofor R. Brye & Niyi S. Omidire & Leah English & Ranjan Parajuli & Laszlo Kekedy-Nagy & Ruhi Sultana & Jennie Popp & Greg Thoma & Trenton L. Roberts & Lauren F. Greenlee, 2022. "Assessment of Struvite as an Alternative Sources of Fertilizer-Phosphorus for Flood-Irrigated Rice," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
    7. Nastasi, Benedetto & Mazzoni, Stefano & Groppi, Daniele & Romagnoli, Alessandro & Astiaso Garcia, Davide, 2021. "Optimized integration of Hydrogen technologies in Island energy systems," Renewable Energy, Elsevier, vol. 174(C), pages 850-864.
    8. De Angelis, Paolo & Tuninetti, Marta & Bergamasco, Luca & Calianno, Luca & Asinari, Pietro & Laio, Francesco & Fasano, Matteo, 2021. "Data-driven appraisal of renewable energy potentials for sustainable freshwater production in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Zhao, Meng-Jie & Li, Er-Mei & Deng, Ning & Hu, Yingjie & Li, Chao-Xiong & Li, Bing & Li, Fang & Guo, Zhen-Guo & He, Jian-Bo, 2022. "Indirect electrodeposition of a NiMo@Ni(OH)2MoOx composite catalyst for superior hydrogen production in acidic and alkaline electrolytes," Renewable Energy, Elsevier, vol. 191(C), pages 370-379.
    10. Zhenglong Fan & Fan Liao & Yujin Ji & Yang Liu & Hui Huang & Dan Wang & Kui Yin & Haiwei Yang & Mengjie Ma & Wenxiang Zhu & Meng Wang & Zhenhui Kang & Youyong Li & Mingwang Shao & Zhiwei Hu & Qi Shao, 2022. "Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Jie Dai & Yinlong Zhu & Yu Chen & Xue Wen & Mingce Long & Xinhao Wu & Zhiwei Hu & Daqin Guan & Xixi Wang & Chuan Zhou & Qian Lin & Yifei Sun & Shih-Chang Weng & Huanting Wang & Wei Zhou & Zongping Sha, 2022. "Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Abdel-Basset, Mohamed & Mohamed, Reda & El-Fergany, Attia & Chakrabortty, Ripon K. & Ryan, Michael J., 2021. "Adaptive and efficient optimization model for optimal parameters of proton exchange membrane fuel cells: A comprehensive analysis," Energy, Elsevier, vol. 233(C).
    13. Othman, Ahmed M. & El-Fergany, Attia A., 2021. "Optimal dynamic operation and modeling of parallel connected multi-stacks fuel cells with improved slime mould algorithm," Renewable Energy, Elsevier, vol. 175(C), pages 770-782.
    14. Antar, Mohammed & Lyu, Dongmei & Nazari, Mahtab & Shah, Ateeq & Zhou, Xiaomin & Smith, Donald L., 2021. "Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Salomone, Fabio & Marocco, Paolo & Ferrario, Daniele & Lanzini, Andrea & Fino, Debora & Bensaid, Samir & Santarelli, Massimo, 2023. "Process simulation and energy analysis of synthetic natural gas production from water electrolysis and CO2 capture in a waste incinerator," Applied Energy, Elsevier, vol. 343(C).
    16. Hachana, Oussama & El-Fergany, Attia A., 2022. "Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer," Energy, Elsevier, vol. 250(C).
    17. Kang Liu & Junwei Fu & Yiyang Lin & Tao Luo & Ganghai Ni & Hongmei Li & Zhang Lin & Min Liu, 2022. "Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Hasanien, Hany M. & Shaheen, Mohamed A.M. & Turky, Rania A. & Qais, Mohammed H. & Alghuwainem, Saad & Kamel, Salah & Tostado-Véliz, Marcos & Jurado, Francisco, 2022. "Precise modeling of PEM fuel cell using a novel Enhanced Transient Search Optimization algorithm," Energy, Elsevier, vol. 247(C).
    19. Yuannan Wang & Mingcheng Zhang & Zhenye Kang & Lei Shi & Yucheng Shen & Boyuan Tian & Yongcun Zou & Hui Chen & Xiaoxin Zou, 2023. "Nano-metal diborides-supported anode catalyst with strongly coupled TaOx/IrO2 catalytic layer for low-iridium-loading proton exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Xiaowei Shi & Chao Dai & Xin Wang & Jiayue Hu & Junying Zhang & Lingxia Zheng & Liang Mao & Huajun Zheng & Mingshan Zhu, 2022. "Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2664-:d:1095199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.