IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2147-d771730.html
   My bibliography  Save this article

Minimum-Cost Fast-Charging Infrastructure Planning for Electric Vehicles along the Austrian High-Level Road Network

Author

Listed:
  • Antonia Golab

    (Energy Economy Group (EEG), Technische Universität Wien, Gusshausstraße 25-29, E370-3, 1040 Vienna, Austria)

  • Sebastian Zwickl-Bernhard

    (Energy Economy Group (EEG), Technische Universität Wien, Gusshausstraße 25-29, E370-3, 1040 Vienna, Austria)

  • Hans Auer

    (Energy Economy Group (EEG), Technische Universität Wien, Gusshausstraße 25-29, E370-3, 1040 Vienna, Austria)

Abstract

Given the ongoing transformation of the transport sector toward electrification, expansion of the current charging infrastructure is essential to meet future charging demands. The lack of fast-charging infrastructure along highways and motorways is a particular obstacle for long-distance travel with battery electric vehicles (BEVs). In this context, we propose a charging infrastructure allocation model that allocates and sizes fast-charging stations along high-level road networks while minimizing the costs for infrastructure investment. The modeling framework is applied to the Austrian highway and motorway network, and the needed expansion of the current fast-charging infrastructure in place is modeled under different future scenarios for 2030. Within these, the share of BEVs in the car fleet, developments in BEV technology and road traffic load changing in the face of future modal shift effects are altered. In particular, we analyze the change in the requirements for fast-charging infrastructure in response to enhanced driving range and growing BEV fleets. The results indicate that improvements in the driving range of BEVs will have limited impact and hardly affect future costs of the expansion of the fast-charging infrastructure. On the contrary, the improvements in the charging power of BEVs have the potential to reduce future infrastructure costs.

Suggested Citation

  • Antonia Golab & Sebastian Zwickl-Bernhard & Hans Auer, 2022. "Minimum-Cost Fast-Charging Infrastructure Planning for Electric Vehicles along the Austrian High-Level Road Network," Energies, MDPI, vol. 15(6), pages 1-26, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2147-:d:771730
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Yena & Preston, John & Ogilvie, David, 2017. "New walking and cycling infrastructure and modal shift in the UK: A quasi-experimental panel study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 320-333.
    2. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    3. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Hainsch, Karlo & Löffler, Konstantin & Burandt, Thorsten & Auer, Hans & Crespo del Granado, Pedro & Pisciella, Paolo & Zwickl-Bernhard, Sebastian, 2022. "Energy transition scenarios: What policies, societal attitudes, and technology developments will realize the EU Green Deal?," Energy, Elsevier, vol. 239(PC).
    5. Hakim Hammadou & Claire Papaix, 2015. "Policy packages for modal shift and CO2 reduction in Lille, France," Post-Print hal-01533557, HAL.
    6. Baumgarte, Felix & Kaiser, Matthias & Keller, Robert, 2021. "Policy support measures for widespread expansion of fast charging infrastructure for electric vehicles," Energy Policy, Elsevier, vol. 156(C).
    7. Amela Ajanovic, 2015. "The future of electric vehicles: prospects and impediments," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(6), pages 521-536, November.
    8. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    9. Globisch, Joachim & Plötz, Patrick & Dütschke, Elisabeth & Wietschel, Martin, 2019. "Consumer preferences for public charging infrastructure for electric vehicles," Transport Policy, Elsevier, vol. 81(C), pages 54-63.
    10. Dong, Xiaohong & Mu, Yunfei & Xu, Xiandong & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2018. "A charging pricing strategy of electric vehicle fast charging stations for the voltage control of electricity distribution networks," Applied Energy, Elsevier, vol. 225(C), pages 857-868.
    11. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    12. Max Briggs & Jeremy Webb & Clevo Wilson, 2015. "Automotive Modal Lock-in: The role of path dependence and large socio-economic regimes in market failure," Economic Analysis and Policy, Elsevier, vol. 45(c), pages 58-68.
    13. Schulz, Felix & Rode, Johannes, 2022. "Public charging infrastructure and electric vehicles in Norway," Energy Policy, Elsevier, vol. 160(C).
    14. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.
    15. Gebauer, Fabian & Vilimek, Roman & Keinath, Andreas & Carbon, Claus-Christian, 2016. "Changing attitudes towards e-mobility by actively elaborating fast-charging technology," Technological Forecasting and Social Change, Elsevier, vol. 106(C), pages 31-36.
    16. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    17. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    18. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    19. Patrick Jochem & Carsten Brendel & Melanie Reuter-Oppermann & Wolf Fichtner & Stefan Nickel, 2016. "Optimizing the allocation of fast charging infrastructure along the German autobahn," Journal of Business Economics, Springer, vol. 86(5), pages 513-535, July.
    20. Lixing Chen & Xueliang Huang & Zhong Chen & Long Jin, 2016. "Study of a New Quick-Charging Strategy for Electric Vehicles in Highway Charging Stations," Energies, MDPI, vol. 9(9), pages 1-20, September.
    21. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    22. Heidrich, Oliver & Hill, Graeme A. & Neaimeh, Myriam & Huebner, Yvonne & Blythe, Philip T. & Dawson, Richard J., 2017. "How do cities support electric vehicles and what difference does it make?," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 17-23.
    23. Biresselioglu, Mehmet Efe & Demirbag Kaplan, Melike & Yilmaz, Barbara Katharina, 2018. "Electric mobility in Europe: A comprehensive review of motivators and barriers in decision making processes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 1-13.
    24. Serradilla, Javier & Wardle, Josey & Blythe, Phil & Gibbon, Jane, 2017. "An evidence-based approach for investment in rapid-charging infrastructure," Energy Policy, Elsevier, vol. 106(C), pages 514-524.
    25. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catalin Vrabie, 2022. "Electric Vehicles Optimism versus the Energy Market Reality," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    2. Gábor Horváth & Attila Bai & Sándor Szegedi & István Lázár & Csongor Máthé & László Huzsvai & Máté Zakar & Zoltán Gabnai & Tamás Tóth, 2023. "A Comprehensive Review of the Distinctive Tendencies of the Diffusion of E-Mobility in Central Europe," Energies, MDPI, vol. 16(14), pages 1-29, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fescioglu-Unver, Nilgun & Yıldız Aktaş, Melike, 2023. "Electric vehicle charging service operations: A review of machine learning applications for infrastructure planning, control, pricing and routing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Peng, Yuan & Bai, Xuemei, 2023. "What EV users say about policy efficacy: Evidence from Shanghai," Transport Policy, Elsevier, vol. 132(C), pages 16-26.
    3. Khatua, Apalak & Ranjan Kumar, Rajeev & Kumar De, Supriya, 2023. "Institutional enablers of electric vehicle market: Evidence from 30 countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    4. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    5. Solvi Hoen, Fredrik & Díez-Gutiérrez, María & Babri, Sahar & Hess, Stephane & Tørset, Trude, 2023. "Charging electric vehicles on long trips and the willingness to pay to reduce waiting for charging. Stated preference survey in Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    6. Philip, Thara & Whitehead, Jake & Prato, Carlo G., 2023. "Adoption of electric vehicles in a laggard, car-dependent nation: Investigating the potential influence of V2G and broader energy benefits on adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    7. Zhang, Lihui & Zhao, Zhenli & Yang, Meng & Li, Songrui, 2020. "A multi-criteria decision method for performance evaluation of public charging service quality," Energy, Elsevier, vol. 195(C).
    8. Brückmann, Gracia, 2022. "Test-drives & information might not boost actual battery electric vehicle uptake?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 204-218.
    9. Christos Karolemeas & Stefanos Tsigdinos & Panagiotis G. Tzouras & Alexandros Nikitas & Efthimios Bakogiannis, 2021. "Determining Electric Vehicle Charging Station Location Suitability: A Qualitative Study of Greek Stakeholders Employing Thematic Analysis and Analytical Hierarchy Process," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    10. Austmann, Leonhard M., 2021. "Drivers of the electric vehicle market: A systematic literature review of empirical studies," Finance Research Letters, Elsevier, vol. 41(C).
    11. Luis Oliveira & Arun Ulahannan & Matthew Knight & Stewart Birrell, 2020. "Wireless Charging of Electric Taxis: Understanding the Facilitators and Barriers to Its Introduction," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    12. Chen, Yu & Lin, Boqiang, 2022. "Are consumers in China’s major cities happy with charging infrastructure for electric vehicles?," Applied Energy, Elsevier, vol. 327(C).
    13. Rachana Vidhi & Prasanna Shrivastava & Abhishek Parikh, 2021. "Social and Technological Impact of Businesses Surrounding Electric Vehicles," Clean Technol., MDPI, vol. 3(1), pages 1-17, February.
    14. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    15. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    16. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    17. Iogansen, Xiatian & Wang, Kailai & Bunch, David & Matson, Grant & Circella, Giovanni, 2023. "Deciphering the factors associated with adoption of alternative fuel vehicles in California: An investigation of latent attitudes, socio-demographics, and neighborhood effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    18. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    19. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    20. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2147-:d:771730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.